Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Umweltfreundlicher Autolack aus Maisstärke soll Kratzer von selbst reparieren

30.05.2016

Oberflächliche Mikrokratzer im Autolack sind harmlos, aber verschandeln die glänzende und makellose Oberfläche von Luxuskarossen. Ein neuer Lack von Saarbrücker Forschern soll nun Abhilfe schaffen: Aus Maisstärke gefertigt ist der Autolack in der Lage, wegen der besonderen Anordnung seiner Moleküle kleine Kratzer selbst zu reparieren. Den neuartigen Lack entwickeln Wissenschaftler der Universität des Saarlandes und des INM – Leibniz-Institut für Neue Materialien gemeinsam. Für die nächsten drei Jahre werden sie vom Bundesministerium für Bildung und Forschung (BMBF) mit insgesamt 1,1 Millionen Euro gefördert

Für die netzartige Struktur der neuen Lacke verwenden die Wissenschaftler ringförmige Abkömmlinge der Maisstärke, sogenannte Cyclodextrine. Diese fädeln sie wie Perlen auf mikroskopische Kunststofffäden auf. In den so entstehenden sogenannten Polyrotaxanen sind die Perlen auf dem Faden frei beweglich, und werden durch sperrige Stoppermoleküle am Abfädeln gehindert. Über eine chemische Reaktion werden die Fäden anschließend über die Perlen miteinander vernetzt.


Umweltfreundliche, ringförmige Cyclodextrine aus Maisstärke (grau) bilden die Grundlage des Autolackes, der Kratzer von selbst repariert.

Quelle: Universität des Saarlandes

„Das entstehende Netzwerk ist beweglich und elastisch wie ein Strumpf“, erklärt Gerhard Wenz, Professor für Organische Makromolekulare Chemie an der Universität des Saarlandes. Nach einem oberflächlichen Lackkratzer kleidet das Material die Lücke wieder aus und der Kratzer verschwindet binnen weniger Tage.

„Das Besondere an unserem Ansatz ist die gute Umweltverträglichkeit“, betont Professor Wenz. „Die Cyclodextrine sind ein Naturmaterial, welches bereits industriell aus Maisstärke gewonnen wird. Wir wollen die chemischen Reaktionen nur in Lösungsmitteln durchführen, die unbedenklich für die Gesundheit sind.“ Zwar sei das Grundprinzip solcher Lacke schon aus Japan bekannt – sie ließen sich jedoch bislang nur mit teuren Ausgangsmaterialien und hochgiftigen Lösungsmitteln herstellen.

„Unser geplantes Herstellungsverfahren soll schlussendlich ein klimafreundliches Produkt ohne Schadstoffemissionen bereitstellen, das auch von der Kostenseite überzeugt“, führt Wenz weiter aus. Für die Anwendung im großen Stil genüge es nicht, kleine Mengen im Labor zu erzeugen. Vielmehr müssen Verfahrenstechniken entwickelt werden, mit denen sich die Lacke in einer Pilotanlage im Kilogrammmaßstab herstellen lassen.

Auch das erfolgreiche Upscaling reicht nicht alleine für eine industrielle Anwendung aus. „Die Lacke müssen die Anforderungen der Automobilindustrie erfüllen. Dazu werden wir umfangreiche Testverfahren durchführen“, sagt Carsten Becker-Willinger, Leiter des Programmbereichs Nanomere am INM – Leibniz-Institut für Neue Materialien in Saarbrücken. Neben der Entwicklung wirtschaftlicher Applikationsverfahren, wie die Sprühtechnik über Roboter, sind umfangreiche Verkratzungs-, Klima- und Bewitterungstests geplant.

Sie sollen den Beweis erbringen, dass die Lacke im Sinne der Automobilhersteller einsetzbar sind und die Kratzer auch wirklich innerhalb weniger Tage ausheilen. Bei all diesen Testreihen werden die üblichen ISO-Richtlinien der Lackindustrie berücksichtigt. „Nur wenn wir diese Normrichtlinien erfüllen, ist eine industrielle Anwendung denkbar“, fasst der Saarbrücker Forscher die geplanten Aktivitäten zusammen.

Hintergrund:
Das Forschungsprojekt „Selbstheilende Fahrzeuglacke auf Basis von Cyclodextrin-Polyrotaxanen“ wird im Rahmen der Fördermaßnahme VIP+ mit insgesamt 1,1.Millionen Euro für drei Jahre vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Die Fördermaßnahme „VIP+ - Validierung des technologischen und gesellschaftlichen Innovationspotenzials“ hat sich zum Ziel gesetzt, die Lücke zwischen ersten Ergebnissen aus der Grundlagenforschung und einer möglichen Anwendung zu schließen. Mit VIP+ werden Forschungs- und Entwicklungsarbeiten in Vorhaben von bis zu drei Jahren mit bis zu 1,5 Millionen Euro gefördert. Weitere Informationen unter https://www.bmbf.de/de/vip-technologische-und-gesellschaftliche-innovationspoten...

Ihre Experten:
Prof. Dr. Gerhard Wenz
Universität des Saarlandes
Organische Makromolekulare Chemie
Tel: 0681-302-3449
g.wenz@mx.uni-saarland.de

Dr.-Ing. Carsten Becker-Willinger
INM – Leibniz-Institut für Neue Materialien
Leiter Nanomere®
Tel: 0681-9300-196
carsten.becker-willinger@leibniz-inm.de

Das INM – Leibniz-Institut für Neue Materialien erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen. Das INM mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 220 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de
http://www.uni-saarland.de
http://www.leibniz-gemeinschaft.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics