Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschung im Nanometer-Bereich: Silizium-Atome springen bei Berührung mit Metall

28.10.2015

Max-Planck Forscher aus Stuttgart entdecken bisher unbekannte Eigenschaft von Halbleitern im Nanometer-Bereich

Silizium ist derzeit das für die Mikroelektronik am besten geeignete Grundmaterial: es dient als Ausgangsmaterial für alle gängigen Computerchips. Wegen der zunehmenden Bedeutung der elektronischen Schaltungen spricht man auch vom Silizium-Zeitalter.


Halbleiteratome (wie Silizium- und Germaniumatome) werden im Nanometer-Bereich unter dem Einfluss von Metall (wie Aluminium) zu Sprüngen angeregt, und dies bei Temperaturen von -190 Grad Celsius

Dr. Zumin Wang

Auch die Bezeichnung Silicon Valley („Silizium-Tal“) für die Hightech-Region in Kalifornien weist auf die enorme Wichtigkeit des Siliziums in der Halbleiter- und Computerindustrie hin.

Kristallines Silizium wird ferner für die Herstellung von TFT-Flachbildschirme zunehmend verwendet und findet darüber hinaus bei der Produktion von Photovoltaikanlagen Anwen-dung.

Ein weiterer Halbleiter ist das Element Germanium, das anfänglich das führende Material in der Elektronik darstellte, bis es vom Silizium verdrängt wurde. Vor wenigen Jahren wurde bekannt, dass einatomige Schichten aus Germanium Elektronen bis zu 10-mal schneller als Silizium leiten. Dadurch könnte es als Halbleitermaterial erneut interessant werden.

Sowohl Silizium als auch Germanium sind sehr hitzebeständig und schmelzen erst bei Temperaturen über 900 Grad Celsius. Die Atome sind im festen Zustand gleichmäßig in einem Kristallgitter angeordnet und schwingen lediglich um ihren Standort.

Bei steigenden Temperaturen werden die Schwingungen stärker, und auch Positionsveränderungen der Atome in Form von Sprüngen werden häufiger. Bei Raumtemperatur werden diese Atom-Sprünge hingegen kaum beobachtet.

Forscher unter Leitung von Prof. Dr. Ir. Eric Jan Mittemeijer, Direktor am Max-Planck-Institut für Intelligente Systeme in Stuttgart, haben nun entdeckt, dass Atomsprünge in Silizium und Germanium überraschenderweise sogar bei äußerst niedrigen Temperaturen im Bereich von minus 190 Grad Celsius auftreten, sobald sie in extrem dünnen Schichten von bis zu 1 Nanometer (ein Millionstel Millimeter) mit dem Metall Aluminium in Berüh-rung kommen.

Der Wissenschaftler Dr. Zumin Wang berichtet: „Wir versuchten bei Temperaturen von minus 190 Grad Celsius eine Probe herzustellen, bei der eine 1nm dünne Schicht Germanium oder Silizium wie in einem Sandwich von 2 Aluminium Schichten umschlossen sein sollte. Das Germanium oder Silizium wich jedoch während der Präparation immer wieder aus und hüpfte an die Oberfläche der Aluminium-Schicht. Es war uns nicht möglich, die gewünschte Probe herzustellen. Dieses Verhalten ärgerte uns zuerst, aber dann waren wir von der Beobachtung höchst überrascht.“

Die Wissenschaftler untersuchten daraufhin den Bindungszustand der Halbleiter-Atome mithilfe von röntgenspektroskopischen Messungen. Dabei stellten sie fest, dass bei extrem dünnen Schichten im Bereich von bis zu 1 Nanometer die starke Bindung zwischen den einzelnen Halbleiter-Atomen aufgrund einer Wechselwirkung mit dem benachbarten Aluminium gelockert wird. Die Halbleiter-Atome können häufiger und leichter springen. Aufgrund dieser Sprünge sind die Halbleiter-Atome beweglich und verändern ihre Position: sie springen an die Oberfläche der Aluminiumschicht. Das benachbarte Aluminium löst diese Beweglichkeit aus und darf dabei nicht weiter entfernt sein als einen halben Nanometer.

„Diese Beobachtung könnte zunehmend an Bedeutung gewinnen, da der Trend zu immer kleineren Halbleiter-Bauelemente in Computern geht. Diese befinden sich bereits in einer Größenordnung von 10-40 Nanometern, so dass an der Grenzfläche von Halbleiter zu Me-tallen Verschmierungen aufgrund von Atom-Sprüngen entstehen können. Interessant ist die Entdeckung dieses Phänomens auch für die Herstellung von Dünnschichtpräparaten auf hitzeempfindlichen Materialien, da der Halbleiter sogar bei sehr niedrigen Temperaturen zur Beweglichkeit angeregt werden kann“, wie Dr. Wang ausführt.

Weitere Informationen:

http://www.is.mpg.de/de/mittemeijer

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kampf dem Plastik mit Verpackungen aus Seetang
15.12.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik