Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TUM-Forscher optimieren Fügetechniken für Leichtbauwerkstoff

27.01.2016

Ob in der Automobilindustrie, im Flugzeugbau oder in der Raumfahrt: Weniger ist mehr, wenn es um das Gewicht geht. Materialien wie faserverstärkte Kunststoffe und Leichtmetalle bieten die Möglichkeit, Bauteile mit geringerer Masse herzustellen. Eine Herausforderung dabei ist die feste Verbindung der verschiedenen Materialien. Forscher der TU München arbeiten daran, diese Fügetechniken zu optimieren. Unter anderen untersuchen sie die Effizienz der Strukturierung der Metall-Oberfläche durch Laserstrahlung.

Der Leichtbau birgt ein großes Potenzial für die Industrie. Autos und Flugzeuge verbrauchen weniger Kraftstoff, wenn sie leichter sind, und haben daher auch einen geringeren CO2-Ausstoß. Bei Elektroautos ist das Gewicht besonders entscheidend: Je leichter das Auto, desto größer die Reichweite, die mit einer Batterieladung möglich ist.


André Heckert, wissenschaftlicher Mitarbeiter am iwb, positioniert den Laser für die Bearbeitung des Metalls für das Fügen von Metall- Kunststoff-Verbindungen.

Ulrich Benz / TUM

Neben Leichtmetallen wie Aluminium werden zunehmend faserverstärkte Kunststoffe genutzt. Dabei ist es wichtig, das jeweilige Material an der richtigen Stelle einzusetzen. Metalle etwa werden dort benötigt, wo hohe Druckfestigkeit und geringe Elastizität gefordert sind – also zum Beispiel bei Schraubverbindungen. So kommt es bei komplexen Produkten wie dem Automobil zum Einsatz beider Werkstoffe und demensprechend zu Mischverbindungen aus Kunststoff und Metall.

Alternative zu Kleber und Schrauben

Die Herausforderung besteht darin, Kunststoff- und Metallkomponenten möglichst effizient, schnell und stabil zu fügen, also fest miteinander zu verbinden. Bisher wurden die Werkstoffe vor allem durch Klebstoffe gefügt, erklärt Alexander Fuchs vom Institut für Werkzeugmaschinen und Betriebswissenschaften der TUM (iwb). Doch dieser Prozess ist aufwändig. Zunächst muss der Klebstoff dosiert und aufgetragen werden. Während der Klebstoff aushärtet, müssen die Komponenten, die geklebt werden, fixiert sein.

Auch die Verbindung der Werkstoffe mithilfe von Schrauben und Nieten hat Nachteile. Denn durch das zusätzliche Material der Verbindungselemente nimmt die Masse der Bauteile zu. Es besteht außerdem die Gefahr, dass die Bohrungen die Struktur schädigen und somit die Festigkeit des faserverstärkten Kunststoffs vermindern.

Oberflächenbehandlung durch Laser

Am iwb wird an Verfahren gearbeitet, mit denen sich Metalle und thermoplastische, also schmelzbare Kunststoffe mithilfe von Wärme hochfest ineinanderfügen lassen. Dafür wird zunächst die Oberfläche des Metalls durch Laserstrahlung strukturiert und mit kleinen Hohlräumen versehen.

André Heckert, wissenschaftlicher Mitarbeiter am iwb, untersucht unter anderem, wie verschiedene Laser-Oberflächenbehandlungen die Festigkeit des Kunststoff-Metall-Verbundes beeinflussen. Durch die Laserstrahlung können Strukturen im Bereich von Nanometern bis einigen Millimetern Höhe erzeugt werden.

"Welche Oberflächenstruktur die besten Verbundeigenschaften ermöglicht, hängt von den eingesetzten Werkstoffen ab", erklärt Heckert. Er fand heraus, dass ein Rillenmuster von einigen Zehntelmillimetern Tiefe besonders bei Kunststoffen geeignet ist, die mit Kurzfasern verstärkt sind.
Feine Oberflächenstrukturen, die durch den Einsatz von gepulsten Lasersystemen generiert werden, sind hingegen besonders effektiv bei sogenannten endlosfaserverstärkten Kunststoffen.

Kurz und schmerzlos: Fügen durch Nanofolien

Nach der Strukturierung mit dem Laser werden Metall und Kunststoff zusammengepresst. Das Metall wird in diesem Zustand erhitzt, bis der Kunststoff schmilzt und die Hohlräume füllt. Nach dem Abkühlen ist eine stabile Verbindung entstanden.

Um die für das Fügen nötige Hitze zu erzeugen nutzen die Wissenschaftler drei unterschiedliche Verfahren.

Durch Laserstrahlung kann auch die nötige Wärme erzeugt werden, um den Kunststoff zum Schmelzen zu bringen. Beim sogenannten Reibpressfügen wird die Wärmeenergie in Form von Reibung erzeugt. Ein zylindrisches Werkzeug rotiert dazu unter definiertem Druck auf der Metalloberfläche.

Eine komplett andere Methode ist das sehr schnelle Fügung ist mithilfe von Nanofolien. Nanofolien erzeugen bei Zündung punktuell sehr hohe Temperaturen von 1000 bis 1500 °C. Diese Hitze wird genutzt, um den Kunststoff und das Metall miteinander zu verbinden. Mit dieser Technologie können zum Beispiel metallische Kabelhalter über eine thermoplastische Zwischenschicht in kürzester Zeit an den Rumpf von Flugzeugen gefügt werden.

Kontakt:

Tanja Mayer
Technische Universität München
Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb)
Tel.: +49 (0)89 289 155 51
Tanja.Mayer@iwb.tum.de
http://www.iwb.tum.de

André Heckert
Technische Universität München
Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb)
Tel.: +49 (0)89 289 155 89
E-Mail: Andre.Heckert@iwb.tum.de

www.iwb.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik