TUM-Forscher optimieren Fügetechniken für Leichtbauwerkstoff

André Heckert, wissenschaftlicher Mitarbeiter am iwb, positioniert den Laser für die Bearbeitung des Metalls für das Fügen von Metall- Kunststoff-Verbindungen. Ulrich Benz / TUM

Der Leichtbau birgt ein großes Potenzial für die Industrie. Autos und Flugzeuge verbrauchen weniger Kraftstoff, wenn sie leichter sind, und haben daher auch einen geringeren CO2-Ausstoß. Bei Elektroautos ist das Gewicht besonders entscheidend: Je leichter das Auto, desto größer die Reichweite, die mit einer Batterieladung möglich ist.

Neben Leichtmetallen wie Aluminium werden zunehmend faserverstärkte Kunststoffe genutzt. Dabei ist es wichtig, das jeweilige Material an der richtigen Stelle einzusetzen. Metalle etwa werden dort benötigt, wo hohe Druckfestigkeit und geringe Elastizität gefordert sind – also zum Beispiel bei Schraubverbindungen. So kommt es bei komplexen Produkten wie dem Automobil zum Einsatz beider Werkstoffe und demensprechend zu Mischverbindungen aus Kunststoff und Metall.

Alternative zu Kleber und Schrauben

Die Herausforderung besteht darin, Kunststoff- und Metallkomponenten möglichst effizient, schnell und stabil zu fügen, also fest miteinander zu verbinden. Bisher wurden die Werkstoffe vor allem durch Klebstoffe gefügt, erklärt Alexander Fuchs vom Institut für Werkzeugmaschinen und Betriebswissenschaften der TUM (iwb). Doch dieser Prozess ist aufwändig. Zunächst muss der Klebstoff dosiert und aufgetragen werden. Während der Klebstoff aushärtet, müssen die Komponenten, die geklebt werden, fixiert sein.

Auch die Verbindung der Werkstoffe mithilfe von Schrauben und Nieten hat Nachteile. Denn durch das zusätzliche Material der Verbindungselemente nimmt die Masse der Bauteile zu. Es besteht außerdem die Gefahr, dass die Bohrungen die Struktur schädigen und somit die Festigkeit des faserverstärkten Kunststoffs vermindern.

Oberflächenbehandlung durch Laser

Am iwb wird an Verfahren gearbeitet, mit denen sich Metalle und thermoplastische, also schmelzbare Kunststoffe mithilfe von Wärme hochfest ineinanderfügen lassen. Dafür wird zunächst die Oberfläche des Metalls durch Laserstrahlung strukturiert und mit kleinen Hohlräumen versehen.

André Heckert, wissenschaftlicher Mitarbeiter am iwb, untersucht unter anderem, wie verschiedene Laser-Oberflächenbehandlungen die Festigkeit des Kunststoff-Metall-Verbundes beeinflussen. Durch die Laserstrahlung können Strukturen im Bereich von Nanometern bis einigen Millimetern Höhe erzeugt werden.

„Welche Oberflächenstruktur die besten Verbundeigenschaften ermöglicht, hängt von den eingesetzten Werkstoffen ab“, erklärt Heckert. Er fand heraus, dass ein Rillenmuster von einigen Zehntelmillimetern Tiefe besonders bei Kunststoffen geeignet ist, die mit Kurzfasern verstärkt sind.
Feine Oberflächenstrukturen, die durch den Einsatz von gepulsten Lasersystemen generiert werden, sind hingegen besonders effektiv bei sogenannten endlosfaserverstärkten Kunststoffen.

Kurz und schmerzlos: Fügen durch Nanofolien

Nach der Strukturierung mit dem Laser werden Metall und Kunststoff zusammengepresst. Das Metall wird in diesem Zustand erhitzt, bis der Kunststoff schmilzt und die Hohlräume füllt. Nach dem Abkühlen ist eine stabile Verbindung entstanden.

Um die für das Fügen nötige Hitze zu erzeugen nutzen die Wissenschaftler drei unterschiedliche Verfahren.

Durch Laserstrahlung kann auch die nötige Wärme erzeugt werden, um den Kunststoff zum Schmelzen zu bringen. Beim sogenannten Reibpressfügen wird die Wärmeenergie in Form von Reibung erzeugt. Ein zylindrisches Werkzeug rotiert dazu unter definiertem Druck auf der Metalloberfläche.

Eine komplett andere Methode ist das sehr schnelle Fügung ist mithilfe von Nanofolien. Nanofolien erzeugen bei Zündung punktuell sehr hohe Temperaturen von 1000 bis 1500 °C. Diese Hitze wird genutzt, um den Kunststoff und das Metall miteinander zu verbinden. Mit dieser Technologie können zum Beispiel metallische Kabelhalter über eine thermoplastische Zwischenschicht in kürzester Zeit an den Rumpf von Flugzeugen gefügt werden.

Kontakt:

Tanja Mayer
Technische Universität München
Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb)
Tel.: +49 (0)89 289 155 51
Tanja.Mayer@iwb.tum.de
http://www.iwb.tum.de

André Heckert
Technische Universität München
Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb)
Tel.: +49 (0)89 289 155 89
E-Mail: Andre.Heckert@iwb.tum.de

www.iwb.tum.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer