Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transregio 30: Mathematische Bruchmechanik will zur Klärung der Rissausbreitung in gradierten Materialien beitragen

15.06.2010
Wenn ein Material verschleißt oder gar bricht, sind oft Rissbildungen die Ursache. Wüsste man schon vor dem Bau eines Autos, einer Lokomotive oder eines Flugzeugs, wie sich während des Betriebs über die Jahre Risse an prekären Stellen ausbreiten, könnten diese Fahrzeuge robuster, wartungsfreundlicher und langlebiger werden. Doch lässt sich die Ausbreitung von Rissen voraussagen, lässt sich bei einem bestimmten Material prognostizieren, wann es zum Bruch kommt? Die Arbeitsgruppe Analysis und angewandte Mathematik an der Universität Kassel versucht, diese Fragen mit den Mitteln der mathematischen Bruchmechanik zu beantworten.

Die Arbeit der Kasseler Mathematiker ist eingebettet in den Sonderforschungsbereich „Transregio 30", der 2006 von der Deutschen Forschungsgemeinschaft (DFG) eingerichtet und jetzt für weitere vier Jahre verlängert wurde.

In einer Kooperation von 18 Lehrstühlen der Universitäten Kassel, Dortmund und Paderborn soll die Basis für die Herstellung von Materialien aus Stahl, Aluminium und Kunststoffen geschaffen werden, die sich unter anderem besonders für den Automobil- und den Flugzeugbau eignen. Die Forschungsarbeiten sind auf insgesamt zwölf Jahre angelegt.

Schon relativ neue Flugzeuge wiesen kleinste Risse auf, die man mit dem Auge allerdings nicht wahrnehmen könne und die keinen Einfluss auf die Betriebssicherheit hätten, sagt Dr. Maria Specovius-Neugebauer, Professorin für Analysis an der Universität Kassel. Entscheidend sei, wie sich solche Risse beispielsweise unter der Einwirkung von Zugkräften, Druck und Vibrationen ausbreiten und wann sie den kritischen Punkt erreichen, an dem das Material bricht.

Seit 1920 versuchen Mathematiker Gesetzmäßigkeiten bei der Ausbreitung von Rissen auf rechnerischem Weg herauszufinden. Besonders schwierig sei das bei Rissen, die sich dreidimensional ausbreiten, sagt Professor Specovius-Neugebauer. Ihre mathematischen Modelle auf der Grundlage partieller Differentialgleichungen beschreiben das physikalische Wechselspiel der Energiepotentiale, das für die Art der Rissausbreitung wesentlich ist. Die lokale Beanspruchung aufgrund äußerer Krafteinwirkung, das Bestreben eines Materials, nach Druckeinwirkung seine ursprüngliche Form wiederzugewinnen, Spannungen und der Energieverbrauch im Material, wenn beim Reißen Moleküle oder Atomverbände getrennt werden: All das spielt für die mathematische Beschreibung der Rissausbreitung eine Rolle.

Ein weiteres Problem kommt hinzu: Die Kasseler Mathematiker stellen ihre Berechnungen nicht für homogene, sondern für so genannte gradierte Materialien an. Diese Materialien zeichnen sich dadurch aus, dass sich ihre Eigenschaften - gezielt einstellbar- ortsabhängig ändern können. So kann beispielsweise an einer Stelle eines Bauteils das Material härter sein als an anderen. Das kompliziert die mathematischen Prognosen über die Rissausbreitung. Professor Specovius-Neugebauer bremst daher überzogene Erwartungen an Ergebnisse. „Das ist noch ein harter mathematischer Weg", sagt sie.

Die Kasseler Mathematiker arbeiten im Sonderforschungsbereich eng mit den Ingenieuren der Fachgruppe Angewandte Mechanik der Universität Paderborn zusammen. Die Berechnungen der Arbeitsgruppe von Professor Dr. Specovius-Neugebauer bilden die Grundlage für numerische Simulationen, die in Paderborn erfolgen. Von den Kollegen dort erhält die Professorin auch die - in Laborexperimenten und Versuchen ermittelten - Parameter, die sie für die Ausarbeitung ihrer mathematischen Modelle benötigt. Die Forscher in Paderborn überprüfen durch Experimente, ob die theoretischen Berechnungen zutreffen. Die in Kassel errechneten Modelle seien eine Voraussetzung dafür, dass in Zukunft von der Industrie für bestimmte Zwecke „maßgeschneiderte" Materialien in einem kürzeren Herstellungsprozess als bisher gefertigt werden können, sagt Dr. Markus Fulland, Ingenieur der Fachgruppe Angewandte Mechanik der Universität Paderborn. Darüber hinaus seien die Modelle der Kasseler Mathematiker ein wichtiger Baustein bei der Optimierung der Auslegung von Bauteilen, da zunehmend teure Experimente durch numerische Simulationen ersetzt werden können.

Info
Prof. Dr. Maria Specovius-Neugebauer
tel (0561) 804 4421
e-mail maria.specovius@uni-kassel.de
Universität Kassel
Fachbereich Mathematik
Dr.-Ing. Markus Fulland
tel (05251) 60 5326
e-mail fulland@fam.upb.de
Universität Paderborn
Fachgruppe Angewandte Mechanik
Fakultät für Maschinenbau

Christine Mandel | idw
Weitere Informationen:
http://www.uni-kassel.de
http://www.uni-kassel.de/presse/pm/bilder/specovius.jpg

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften