Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transparente flexible Elektroden mit geringer Lichtstreuung durch Elektro-Spinning-Prozesse

13.04.2017

Für die Entwicklung flexibler Elektroden nutzt das INM - Leibniz-Institut für Neue Materialien das Verfahren des sogenannten Elektrospinnens. Dabei werden Materialien in feinste Fasern versponnen, die hundertmal dünner als ein menschliches Haar sind. Diese schlagen sich als unstrukturiertes, weitmaschiges Netz auf Glas und auch auf Folie nieder. Mit dem Verspinnen von leitfähigen Materialien ergeben sich so transparente, flexible, leitfähige Elektroden, deren Streuverlust unter zwei Prozent liegt.

Ihre Ergebnisse und Möglichkeiten zeigen die Entwickler auf der diesjährigen Hannover Messe in Halle 2 am Stand B46 vom 24. bis 28. April.

Flexible, transparente Elektroden sind die Grundlage für Printed Electronics. Touchscreens und Displays der Zukunft werden gebogen und flexibel sein. Sie kommen zum Beispiel in Handys, Tablets, Smartphones, Autos, Bekleidung oder in der Medizintechnik zum Einsatz.


Mit dem Verspinnen von leitfähigen Materialien ergeben sich transparente, flexible, leitfähige Elektroden, deren Streuverlust unter zwei Prozent liegt.

Quelle: Uwe Bellhäuser, frei im Zusammenhang mit dieser Meldung.

Tippen und Wischen kann auf gebogenen Geräten nur funktionieren, wenn als Materialien für Touchscreens und für elektrische Schaltkreise flexible Werkstoffe verwendet werden und keine spröden Materialien wie Indium-Zinn-Oxid oder Silizium. Für die Entwicklung solcher Materialien nutzt das INM - Leibniz-Institut für Neue Materialien das Verfahren des sogenannten Elektrospinnens.

Dabei werden Materialien in feinste Fasern versponnen, die hundertmal dünner als ein menschliches Haar sind. Diese schlagen sich als unstrukturiertes, weitmaschiges Netz auf Glas und auch auf Folie nieder. Mit dem Verspinnen von leitfähigen Materialien ergeben sich so transparente, flexible, leitfähige Elektroden, deren Streuverlust unter zwei Prozent liegt.

Das Prinzip des Elektrospinnens beruht auf der Elektrohydrodynamik von Polymertropfen in starken elektromagnetischen Feldern. Die Tropfen gehen im elektrischen Feld in einen Kegel über. Aus diesem schießt ein Strahl des flüssigen Polymers heraus, um so die elektrischen Ladungen zu verringern.

An der Luft bilden sich aus dem Polymerstrahl wegen seiner Biegestabilität Fasern mit einer Dicke von weniger als 500 Nanometern. Sie scheiden sich auf Substraten wie Glas oder Folie als unstrukturiertes, weitmaschiges Netz ab.

„Das Neuartige an unserem Ansatz liegt in den Ausgangsmaterialien, die wir verwenden. Wir verarbeiten Polymere, Komposite aber auch Sole, die anschließend kalziniert werden. Je nach Ausgangsmaterial ist es möglich, sowohl intrinsisch leitfähige Fasern herzustellen, als auch solche, die in einem weiteren Schritt über Photochemische Metallisierung elektrisch leitfähig werden“, erklärt Peter William de Oliveira, Leiter des InnovationsZentrums am INM.

Im Gegensatz zu Strukturierungsverfahren über Stempel oder Druckverfahren, ermöglicht das Elektrospinnen unstrukturierte leitfähige Vliese, deren Dichte hoch genug ist, um die elektrische Leitfähigkeit auf dem Substrat flächendeckend zu ermöglichen. Gleichzeitig ist die Anzahl an Faserkreuzungspunkten so gering, dass die Lichtstreuung auf unter zwei Prozent reduziert wird.

Bei einer Faserdicke unter einem halben Mikrometer ist das Vlies für das menschliche Auge nicht zu erkennen und erscheint transparent. Durch den netzartigen, unsymmetrischen Charakter der Fasern fallen auch typische Beugungsphänomene weg, wie zum Beispiel störende Regenbogeneffekte.

„Dieser Prozess ist maschinentauglich und ermöglicht deshalb einen sehr effizienten Weg für solche Elektroden. Im InnovationsZentrum verfügen wir über eine Spinn-Station, mit der wir auf die unterschiedlichen Bedürfnisse der Interessenten eingehen können“, meint de Oliveira. So ließen sich in Kooperation Elektroden für Flexible Displays, für die Photovoltaik oder für passive Sensoren entwickeln.

Die Fasern des Elektrospinnens ließen sich nicht nur als leitfähige Vliese verwenden. Sie seien auch geeignet, um sie zu Elektronik zu verweben, oder um sie, aufgrund ihrer hohen Oberfläche, für die aktive Wasserbehandlung einzusetzen.

Ihr Experte am INM
Dr. Peter William de Oliveira
Leiter InnovationsZentrum INM
Leiter Optische Materialien
Tel.: 0681-9300-148
peter.oliveira@leibniz-inm.de

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 240 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik