Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Transparente flexible Elektroden mit geringer Lichtstreuung durch Elektro-Spinning-Prozesse

13.04.2017

Für die Entwicklung flexibler Elektroden nutzt das INM - Leibniz-Institut für Neue Materialien das Verfahren des sogenannten Elektrospinnens. Dabei werden Materialien in feinste Fasern versponnen, die hundertmal dünner als ein menschliches Haar sind. Diese schlagen sich als unstrukturiertes, weitmaschiges Netz auf Glas und auch auf Folie nieder. Mit dem Verspinnen von leitfähigen Materialien ergeben sich so transparente, flexible, leitfähige Elektroden, deren Streuverlust unter zwei Prozent liegt.

Ihre Ergebnisse und Möglichkeiten zeigen die Entwickler auf der diesjährigen Hannover Messe in Halle 2 am Stand B46 vom 24. bis 28. April.

Flexible, transparente Elektroden sind die Grundlage für Printed Electronics. Touchscreens und Displays der Zukunft werden gebogen und flexibel sein. Sie kommen zum Beispiel in Handys, Tablets, Smartphones, Autos, Bekleidung oder in der Medizintechnik zum Einsatz.


Mit dem Verspinnen von leitfähigen Materialien ergeben sich transparente, flexible, leitfähige Elektroden, deren Streuverlust unter zwei Prozent liegt.

Quelle: Uwe Bellhäuser, frei im Zusammenhang mit dieser Meldung.

Tippen und Wischen kann auf gebogenen Geräten nur funktionieren, wenn als Materialien für Touchscreens und für elektrische Schaltkreise flexible Werkstoffe verwendet werden und keine spröden Materialien wie Indium-Zinn-Oxid oder Silizium. Für die Entwicklung solcher Materialien nutzt das INM - Leibniz-Institut für Neue Materialien das Verfahren des sogenannten Elektrospinnens.

Dabei werden Materialien in feinste Fasern versponnen, die hundertmal dünner als ein menschliches Haar sind. Diese schlagen sich als unstrukturiertes, weitmaschiges Netz auf Glas und auch auf Folie nieder. Mit dem Verspinnen von leitfähigen Materialien ergeben sich so transparente, flexible, leitfähige Elektroden, deren Streuverlust unter zwei Prozent liegt.

Das Prinzip des Elektrospinnens beruht auf der Elektrohydrodynamik von Polymertropfen in starken elektromagnetischen Feldern. Die Tropfen gehen im elektrischen Feld in einen Kegel über. Aus diesem schießt ein Strahl des flüssigen Polymers heraus, um so die elektrischen Ladungen zu verringern.

An der Luft bilden sich aus dem Polymerstrahl wegen seiner Biegestabilität Fasern mit einer Dicke von weniger als 500 Nanometern. Sie scheiden sich auf Substraten wie Glas oder Folie als unstrukturiertes, weitmaschiges Netz ab.

„Das Neuartige an unserem Ansatz liegt in den Ausgangsmaterialien, die wir verwenden. Wir verarbeiten Polymere, Komposite aber auch Sole, die anschließend kalziniert werden. Je nach Ausgangsmaterial ist es möglich, sowohl intrinsisch leitfähige Fasern herzustellen, als auch solche, die in einem weiteren Schritt über Photochemische Metallisierung elektrisch leitfähig werden“, erklärt Peter William de Oliveira, Leiter des InnovationsZentrums am INM.

Im Gegensatz zu Strukturierungsverfahren über Stempel oder Druckverfahren, ermöglicht das Elektrospinnen unstrukturierte leitfähige Vliese, deren Dichte hoch genug ist, um die elektrische Leitfähigkeit auf dem Substrat flächendeckend zu ermöglichen. Gleichzeitig ist die Anzahl an Faserkreuzungspunkten so gering, dass die Lichtstreuung auf unter zwei Prozent reduziert wird.

Bei einer Faserdicke unter einem halben Mikrometer ist das Vlies für das menschliche Auge nicht zu erkennen und erscheint transparent. Durch den netzartigen, unsymmetrischen Charakter der Fasern fallen auch typische Beugungsphänomene weg, wie zum Beispiel störende Regenbogeneffekte.

„Dieser Prozess ist maschinentauglich und ermöglicht deshalb einen sehr effizienten Weg für solche Elektroden. Im InnovationsZentrum verfügen wir über eine Spinn-Station, mit der wir auf die unterschiedlichen Bedürfnisse der Interessenten eingehen können“, meint de Oliveira. So ließen sich in Kooperation Elektroden für Flexible Displays, für die Photovoltaik oder für passive Sensoren entwickeln.

Die Fasern des Elektrospinnens ließen sich nicht nur als leitfähige Vliese verwenden. Sie seien auch geeignet, um sie zu Elektronik zu verweben, oder um sie, aufgrund ihrer hohen Oberfläche, für die aktive Wasserbehandlung einzusetzen.

Ihr Experte am INM
Dr. Peter William de Oliveira
Leiter InnovationsZentrum INM
Leiter Optische Materialien
Tel.: 0681-9300-148
peter.oliveira@leibniz-inm.de

Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 240 Mitarbeiter.

Weitere Informationen:

http://www.leibniz-inm.de

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie