Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trampolinspringende Wassertröpfchen

05.11.2015

Materialien, die Wasser und Eis von selbst extrem stark abstossen, sind in der Luftfahrt und vielen anderen technischen Anwendungen begehrt. ETH-Forscher haben jetzt herausgefunden, wie man die starren Oberflächen solcher Materialien gezielt designen kann – indem sie Wassertröpfchen das Trampolinspringen beibrachten.

Wer in den nächsten Monaten mit dem Flugzeug reist, wird möglicherweise Zeuge eines winterlichen Luftfahrt-Rituals, bei dem die Tragflächen vor dem Start mit einer Spezialflüssigkeit von Eis und Schnee befreit werden. Das ist nötig, da kleinste Wassertröpfchen in der Luft bei bestimmten Wetterbedingungen zu Eis gefrieren können, wenn sie sich auf den Flugzeugflügeln niederlassen. Das wiederum kann zu einer Verwirbelung des Luftstroms beim Start und dadurch zu einem geringeren Auftrieb führen, was schnell gefährlich werden kann.


Spezielle mikrostrukturierte Silizium‐Oberflächen weisen Wassertropfen so stark ab, dass letztere in die Höhe katapultiert werden.

Digit Works / ETH Zürich


Sequenzielle Aufnahmen mit einer Hochgeschwindigkeitskamera zeigen, wie ein Wassertropfen ständig höher springt.

Tom Schutzius / ETH Zürich

Noch besser als eine solche Enteisung wäre natürlich, wenn die Eistropfen erst gar nicht an den Tragflächen hafteten oder von diesen gar aktiv abgestossen würden. ETH-Forscher haben jetzt in einer im Wissenschaftsmagazin Nature veröffentlichten Studie gezeigt, dass es im Prinzip möglich ist, Materialien zu entwickeln, die gegen Eis und Wasser geradezu allergisch sind. Zunächst einmal brachten sie dazu kleinen Wassertröpfchen das Trampolinspringen bei.

Mysteriöse Kräfte

ETH-Professor Dimos Poulikakos und seine Mitarbeiter am Labor für Thermodynamik in neuen Technologien studierten das Verhalten von Wassertropfen auf Oberflächen, indem sie einen millimetergrossen Tropfen auf eine speziell bearbeitete starre Silizium-Oberfläche setzten und dann den Luftdruck in der Experimentierkammer stetig absenkten, während eine Hochgeschwindigkeitskamera den Tropfen filmte.

Zunächst blieb der Tropfen still auf der Oberfläche liegen, doch bei etwa einem Zwanzigstel des normalen Atmosphärendrucks sprang er plötzlich hoch. Nach einem kurzen Hüpfer landete der Tropfen schliesslich wieder auf der Oberfläche und sprang erneut hoch – und zwar noch höher als beim ersten Mal. Wie ein Trampolinspringer, der mit jedem Sprung vom elastischen Sprungtuch an Höhe gewinnt, wurde auch der Wassertropfen bei jedem Kontakt mit der Oberfläche immer höher geschleudert, obwohl diese absolut starr war.

Was für den Laien nach Magie aussieht, erscheint dem Experten zunächst einmal als die vermeintliche Verletzung grundlegender physikalischer Gesetze, nach denen ein Körper, der auf eine starre Oberfläche trifft, eigentlich nicht spontan Bewegungsenergie gewinnen und damit höher zurückspringen kann. Genau dies aber scheint beim trampolinspringenden Wassertropfen zu geschehen.

Tropfen mit Raketenantrieb

Um zu verstehen, woher die Kraft kam, welche die Wassertröpfchen hochschleuderte, analysierte Poulikakos mit seinen Postdoktoranden Tom Schutzius und Stefan Jung bis ins Detail die Bewegungen des Tropfens sowie, mit einer Wärmebildkamera, die Temperaturverteilung in seinem Inneren. Die ETH-Wissenschaftler, die in den letzten Jahren bereits einigen Rätseln von Wassertropfen auf die Spur gekommen sind, fanden jetzt heraus, dass das Zusammenspiel der natürlichen Wasserverdampfung und der Mikrostruktur der Materialoberfläche für das Trampolin-Phänomen eine entscheidende Rolle spielt. Der Überdruck, der durch die Verdampfung zwischen Oberfläche und Tropfen entsteht, schleudert diesen wie eine Feder bei jedem Aufprall in die Höhe.

Beim Gefrieren eines weit unter null Grad gekühlten («supergekühlten») Wassertropfens wird der Verdampfungseffekt durch die so genannte Rekaleszenz weiter verstärkt. Dieser Effekt ist aus der Metallverarbeitung bekannt, etwa bei geschmiedetem Eisen, das sich während des Abkühlens kurzfristig noch einmal von selbst bis zur Rotglut erhitzt.

Das liegt daran, dass das Innere des Eisens erstarrt und dabei latente Wärme freisetzt. Ganz Ähnliches geschieht bei einem Wassertropfen: Ein Tropfen, der durch Verdunstung von Wasser an seiner Oberfläche unter den Gefrierpunkt abkühlt, bildet zunächst Eiskristalle. Die Wärme, die bei diesem Phasenübergang von flüssig zu fest abgegeben wird, heizt den Tropfen dann schnell auf null Grad auf.

«Diese Erwärmung passiert in wenigen Millisekunden», erklärt Schutzius, «und führt im Anschluss daran zu einer explosiven Verdampfung.» Daraufhin kühlt der Tropfen erneut ab, und der Zyklus wiederholt sich. Die explosive Verdampfung führt zu einem noch grösseren Überdruck zwischen Tropfen und Oberfläche und lässt ihn dadurch wie eine Rakete abheben.

Intelligentes Oberflächendesign

Der eigentlich Clou des Ganzen liegt allerdings in der Oberfläche selbst: Zum einen muss sie rau sein, damit der Wassertropfen nicht an ihr hängen bleibt, zum anderen aber darf sie nicht zu rau sein, da sonst der Wasserdampf zu schnell durch die Poren und Ritzen der Oberfläche entweichen und der Raketeneffekt damit buchstäblich verpuffen würde. Die von den ETH-Forschern hergestellten mikro-strukturierten Silizium-Oberflächen erfüllen genau diese Bedingungen: Sie bestehen aus kleinen (nur wenige Mikrometer grossen) Säulen, die im Abstand von etwa fünf Mikrometern regelmässig angeordnet sind.

«Aus unseren Forschungsergebnissen können wir ableiten, wie Oberflächen generell beschaffen sein müssen, um Wasser und Eis energisch abzustossen, und sie dann entsprechend designen», sagt Poulikakos. In ihrem Experiment untersuchten die Forscher verschiedene Materialien, darunter oberflächenbehandeltes Aluminium und Kohlenstoff-Nanoröhren.

Um den Trampolin-Mechanismus noch praxistauglicher zu machen, müsste man freilich soweit kommen, dass er auch bei normalem Luftdruck funktioniert. Poulikakos und seine Mitarbeiter hoffen, in den nächsten Jahren Fortschritte in diese Richtung zu machen. Dann wären verschiedenste Anwendungen denkbar, die von eisfreien Hochspannungsleitungen bis hin zu wasser- und eisabweisenden Strassenbelägen reichen – und vielleicht eines Tages die Enteisung von Flugzeugflügeln überflüssig machen.

Weitere Informationen:

http://www.ethz.ch/news
http://www.ltnt.ethz.ch

Claudia Naegeli | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie