Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trampolinspringende Wassertröpfchen

05.11.2015

Materialien, die Wasser und Eis von selbst extrem stark abstossen, sind in der Luftfahrt und vielen anderen technischen Anwendungen begehrt. ETH-Forscher haben jetzt herausgefunden, wie man die starren Oberflächen solcher Materialien gezielt designen kann – indem sie Wassertröpfchen das Trampolinspringen beibrachten.

Wer in den nächsten Monaten mit dem Flugzeug reist, wird möglicherweise Zeuge eines winterlichen Luftfahrt-Rituals, bei dem die Tragflächen vor dem Start mit einer Spezialflüssigkeit von Eis und Schnee befreit werden. Das ist nötig, da kleinste Wassertröpfchen in der Luft bei bestimmten Wetterbedingungen zu Eis gefrieren können, wenn sie sich auf den Flugzeugflügeln niederlassen. Das wiederum kann zu einer Verwirbelung des Luftstroms beim Start und dadurch zu einem geringeren Auftrieb führen, was schnell gefährlich werden kann.


Spezielle mikrostrukturierte Silizium‐Oberflächen weisen Wassertropfen so stark ab, dass letztere in die Höhe katapultiert werden.

Digit Works / ETH Zürich


Sequenzielle Aufnahmen mit einer Hochgeschwindigkeitskamera zeigen, wie ein Wassertropfen ständig höher springt.

Tom Schutzius / ETH Zürich

Noch besser als eine solche Enteisung wäre natürlich, wenn die Eistropfen erst gar nicht an den Tragflächen hafteten oder von diesen gar aktiv abgestossen würden. ETH-Forscher haben jetzt in einer im Wissenschaftsmagazin Nature veröffentlichten Studie gezeigt, dass es im Prinzip möglich ist, Materialien zu entwickeln, die gegen Eis und Wasser geradezu allergisch sind. Zunächst einmal brachten sie dazu kleinen Wassertröpfchen das Trampolinspringen bei.

Mysteriöse Kräfte

ETH-Professor Dimos Poulikakos und seine Mitarbeiter am Labor für Thermodynamik in neuen Technologien studierten das Verhalten von Wassertropfen auf Oberflächen, indem sie einen millimetergrossen Tropfen auf eine speziell bearbeitete starre Silizium-Oberfläche setzten und dann den Luftdruck in der Experimentierkammer stetig absenkten, während eine Hochgeschwindigkeitskamera den Tropfen filmte.

Zunächst blieb der Tropfen still auf der Oberfläche liegen, doch bei etwa einem Zwanzigstel des normalen Atmosphärendrucks sprang er plötzlich hoch. Nach einem kurzen Hüpfer landete der Tropfen schliesslich wieder auf der Oberfläche und sprang erneut hoch – und zwar noch höher als beim ersten Mal. Wie ein Trampolinspringer, der mit jedem Sprung vom elastischen Sprungtuch an Höhe gewinnt, wurde auch der Wassertropfen bei jedem Kontakt mit der Oberfläche immer höher geschleudert, obwohl diese absolut starr war.

Was für den Laien nach Magie aussieht, erscheint dem Experten zunächst einmal als die vermeintliche Verletzung grundlegender physikalischer Gesetze, nach denen ein Körper, der auf eine starre Oberfläche trifft, eigentlich nicht spontan Bewegungsenergie gewinnen und damit höher zurückspringen kann. Genau dies aber scheint beim trampolinspringenden Wassertropfen zu geschehen.

Tropfen mit Raketenantrieb

Um zu verstehen, woher die Kraft kam, welche die Wassertröpfchen hochschleuderte, analysierte Poulikakos mit seinen Postdoktoranden Tom Schutzius und Stefan Jung bis ins Detail die Bewegungen des Tropfens sowie, mit einer Wärmebildkamera, die Temperaturverteilung in seinem Inneren. Die ETH-Wissenschaftler, die in den letzten Jahren bereits einigen Rätseln von Wassertropfen auf die Spur gekommen sind, fanden jetzt heraus, dass das Zusammenspiel der natürlichen Wasserverdampfung und der Mikrostruktur der Materialoberfläche für das Trampolin-Phänomen eine entscheidende Rolle spielt. Der Überdruck, der durch die Verdampfung zwischen Oberfläche und Tropfen entsteht, schleudert diesen wie eine Feder bei jedem Aufprall in die Höhe.

Beim Gefrieren eines weit unter null Grad gekühlten («supergekühlten») Wassertropfens wird der Verdampfungseffekt durch die so genannte Rekaleszenz weiter verstärkt. Dieser Effekt ist aus der Metallverarbeitung bekannt, etwa bei geschmiedetem Eisen, das sich während des Abkühlens kurzfristig noch einmal von selbst bis zur Rotglut erhitzt.

Das liegt daran, dass das Innere des Eisens erstarrt und dabei latente Wärme freisetzt. Ganz Ähnliches geschieht bei einem Wassertropfen: Ein Tropfen, der durch Verdunstung von Wasser an seiner Oberfläche unter den Gefrierpunkt abkühlt, bildet zunächst Eiskristalle. Die Wärme, die bei diesem Phasenübergang von flüssig zu fest abgegeben wird, heizt den Tropfen dann schnell auf null Grad auf.

«Diese Erwärmung passiert in wenigen Millisekunden», erklärt Schutzius, «und führt im Anschluss daran zu einer explosiven Verdampfung.» Daraufhin kühlt der Tropfen erneut ab, und der Zyklus wiederholt sich. Die explosive Verdampfung führt zu einem noch grösseren Überdruck zwischen Tropfen und Oberfläche und lässt ihn dadurch wie eine Rakete abheben.

Intelligentes Oberflächendesign

Der eigentlich Clou des Ganzen liegt allerdings in der Oberfläche selbst: Zum einen muss sie rau sein, damit der Wassertropfen nicht an ihr hängen bleibt, zum anderen aber darf sie nicht zu rau sein, da sonst der Wasserdampf zu schnell durch die Poren und Ritzen der Oberfläche entweichen und der Raketeneffekt damit buchstäblich verpuffen würde. Die von den ETH-Forschern hergestellten mikro-strukturierten Silizium-Oberflächen erfüllen genau diese Bedingungen: Sie bestehen aus kleinen (nur wenige Mikrometer grossen) Säulen, die im Abstand von etwa fünf Mikrometern regelmässig angeordnet sind.

«Aus unseren Forschungsergebnissen können wir ableiten, wie Oberflächen generell beschaffen sein müssen, um Wasser und Eis energisch abzustossen, und sie dann entsprechend designen», sagt Poulikakos. In ihrem Experiment untersuchten die Forscher verschiedene Materialien, darunter oberflächenbehandeltes Aluminium und Kohlenstoff-Nanoröhren.

Um den Trampolin-Mechanismus noch praxistauglicher zu machen, müsste man freilich soweit kommen, dass er auch bei normalem Luftdruck funktioniert. Poulikakos und seine Mitarbeiter hoffen, in den nächsten Jahren Fortschritte in diese Richtung zu machen. Dann wären verschiedenste Anwendungen denkbar, die von eisfreien Hochspannungsleitungen bis hin zu wasser- und eisabweisenden Strassenbelägen reichen – und vielleicht eines Tages die Enteisung von Flugzeugflügeln überflüssig machen.

Weitere Informationen:

http://www.ethz.ch/news
http://www.ltnt.ethz.ch

Claudia Naegeli | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen