Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trampolinspringende Wassertröpfchen

05.11.2015

Materialien, die Wasser und Eis von selbst extrem stark abstossen, sind in der Luftfahrt und vielen anderen technischen Anwendungen begehrt. ETH-Forscher haben jetzt herausgefunden, wie man die starren Oberflächen solcher Materialien gezielt designen kann – indem sie Wassertröpfchen das Trampolinspringen beibrachten.

Wer in den nächsten Monaten mit dem Flugzeug reist, wird möglicherweise Zeuge eines winterlichen Luftfahrt-Rituals, bei dem die Tragflächen vor dem Start mit einer Spezialflüssigkeit von Eis und Schnee befreit werden. Das ist nötig, da kleinste Wassertröpfchen in der Luft bei bestimmten Wetterbedingungen zu Eis gefrieren können, wenn sie sich auf den Flugzeugflügeln niederlassen. Das wiederum kann zu einer Verwirbelung des Luftstroms beim Start und dadurch zu einem geringeren Auftrieb führen, was schnell gefährlich werden kann.


Spezielle mikrostrukturierte Silizium‐Oberflächen weisen Wassertropfen so stark ab, dass letztere in die Höhe katapultiert werden.

Digit Works / ETH Zürich


Sequenzielle Aufnahmen mit einer Hochgeschwindigkeitskamera zeigen, wie ein Wassertropfen ständig höher springt.

Tom Schutzius / ETH Zürich

Noch besser als eine solche Enteisung wäre natürlich, wenn die Eistropfen erst gar nicht an den Tragflächen hafteten oder von diesen gar aktiv abgestossen würden. ETH-Forscher haben jetzt in einer im Wissenschaftsmagazin Nature veröffentlichten Studie gezeigt, dass es im Prinzip möglich ist, Materialien zu entwickeln, die gegen Eis und Wasser geradezu allergisch sind. Zunächst einmal brachten sie dazu kleinen Wassertröpfchen das Trampolinspringen bei.

Mysteriöse Kräfte

ETH-Professor Dimos Poulikakos und seine Mitarbeiter am Labor für Thermodynamik in neuen Technologien studierten das Verhalten von Wassertropfen auf Oberflächen, indem sie einen millimetergrossen Tropfen auf eine speziell bearbeitete starre Silizium-Oberfläche setzten und dann den Luftdruck in der Experimentierkammer stetig absenkten, während eine Hochgeschwindigkeitskamera den Tropfen filmte.

Zunächst blieb der Tropfen still auf der Oberfläche liegen, doch bei etwa einem Zwanzigstel des normalen Atmosphärendrucks sprang er plötzlich hoch. Nach einem kurzen Hüpfer landete der Tropfen schliesslich wieder auf der Oberfläche und sprang erneut hoch – und zwar noch höher als beim ersten Mal. Wie ein Trampolinspringer, der mit jedem Sprung vom elastischen Sprungtuch an Höhe gewinnt, wurde auch der Wassertropfen bei jedem Kontakt mit der Oberfläche immer höher geschleudert, obwohl diese absolut starr war.

Was für den Laien nach Magie aussieht, erscheint dem Experten zunächst einmal als die vermeintliche Verletzung grundlegender physikalischer Gesetze, nach denen ein Körper, der auf eine starre Oberfläche trifft, eigentlich nicht spontan Bewegungsenergie gewinnen und damit höher zurückspringen kann. Genau dies aber scheint beim trampolinspringenden Wassertropfen zu geschehen.

Tropfen mit Raketenantrieb

Um zu verstehen, woher die Kraft kam, welche die Wassertröpfchen hochschleuderte, analysierte Poulikakos mit seinen Postdoktoranden Tom Schutzius und Stefan Jung bis ins Detail die Bewegungen des Tropfens sowie, mit einer Wärmebildkamera, die Temperaturverteilung in seinem Inneren. Die ETH-Wissenschaftler, die in den letzten Jahren bereits einigen Rätseln von Wassertropfen auf die Spur gekommen sind, fanden jetzt heraus, dass das Zusammenspiel der natürlichen Wasserverdampfung und der Mikrostruktur der Materialoberfläche für das Trampolin-Phänomen eine entscheidende Rolle spielt. Der Überdruck, der durch die Verdampfung zwischen Oberfläche und Tropfen entsteht, schleudert diesen wie eine Feder bei jedem Aufprall in die Höhe.

Beim Gefrieren eines weit unter null Grad gekühlten («supergekühlten») Wassertropfens wird der Verdampfungseffekt durch die so genannte Rekaleszenz weiter verstärkt. Dieser Effekt ist aus der Metallverarbeitung bekannt, etwa bei geschmiedetem Eisen, das sich während des Abkühlens kurzfristig noch einmal von selbst bis zur Rotglut erhitzt.

Das liegt daran, dass das Innere des Eisens erstarrt und dabei latente Wärme freisetzt. Ganz Ähnliches geschieht bei einem Wassertropfen: Ein Tropfen, der durch Verdunstung von Wasser an seiner Oberfläche unter den Gefrierpunkt abkühlt, bildet zunächst Eiskristalle. Die Wärme, die bei diesem Phasenübergang von flüssig zu fest abgegeben wird, heizt den Tropfen dann schnell auf null Grad auf.

«Diese Erwärmung passiert in wenigen Millisekunden», erklärt Schutzius, «und führt im Anschluss daran zu einer explosiven Verdampfung.» Daraufhin kühlt der Tropfen erneut ab, und der Zyklus wiederholt sich. Die explosive Verdampfung führt zu einem noch grösseren Überdruck zwischen Tropfen und Oberfläche und lässt ihn dadurch wie eine Rakete abheben.

Intelligentes Oberflächendesign

Der eigentlich Clou des Ganzen liegt allerdings in der Oberfläche selbst: Zum einen muss sie rau sein, damit der Wassertropfen nicht an ihr hängen bleibt, zum anderen aber darf sie nicht zu rau sein, da sonst der Wasserdampf zu schnell durch die Poren und Ritzen der Oberfläche entweichen und der Raketeneffekt damit buchstäblich verpuffen würde. Die von den ETH-Forschern hergestellten mikro-strukturierten Silizium-Oberflächen erfüllen genau diese Bedingungen: Sie bestehen aus kleinen (nur wenige Mikrometer grossen) Säulen, die im Abstand von etwa fünf Mikrometern regelmässig angeordnet sind.

«Aus unseren Forschungsergebnissen können wir ableiten, wie Oberflächen generell beschaffen sein müssen, um Wasser und Eis energisch abzustossen, und sie dann entsprechend designen», sagt Poulikakos. In ihrem Experiment untersuchten die Forscher verschiedene Materialien, darunter oberflächenbehandeltes Aluminium und Kohlenstoff-Nanoröhren.

Um den Trampolin-Mechanismus noch praxistauglicher zu machen, müsste man freilich soweit kommen, dass er auch bei normalem Luftdruck funktioniert. Poulikakos und seine Mitarbeiter hoffen, in den nächsten Jahren Fortschritte in diese Richtung zu machen. Dann wären verschiedenste Anwendungen denkbar, die von eisfreien Hochspannungsleitungen bis hin zu wasser- und eisabweisenden Strassenbelägen reichen – und vielleicht eines Tages die Enteisung von Flugzeugflügeln überflüssig machen.

Weitere Informationen:

http://www.ethz.ch/news
http://www.ltnt.ethz.ch

Claudia Naegeli | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften