Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Touchless- statt Touchscreen

30.09.2015

Berührungslose Bildschirme sprechen auf Feuchtigkeit an, die der menschliche Körper abgibt

Touchscreens sind praktisch, noch praktischer aber wären Touchless-Screens. Denn auch wenn mit berührungsempfindlichen Bildschirmen der Siegeszug der Smartphones begann und Bank- oder Fahrkartenautomaten über sie gesteuert werden, haben sie einige Nachteile.


Berührungslose Farbänderung: Eine Struktur, in der sich Schichten aus Antimonphosphat und Oxid-Nanopartikeln abwechseln, erzeugt Farbe auf dieselbe Weise wie ein Schmetterlingsflügel oder Perlmutt. Die Farbe wechselt, wenn sich ihr ein Finger bis auf wenige Millimeter annähert. Denn das Material nimmt dann die Feuchtigkeit auf, die der Finger abgibt.

© Advanced Materials 2015/MPI für Festkörperforschung

So zeigen Touchscreens mit der Zeit mechanischen Verschleiß und wirken als Übertragungsweg für Bakterien und Viren. Um das zu vermeiden, haben Forscher des Stuttgarter Max-Planck-Instituts für Festkörperforschung und der Ludwig-Maximilians-Universität München nun Nanostrukturen entwickelt, die ihre elektrischen und wahlweise auch ihre optischen Eigenschaften ändern, sobald sich ihnen ein Finger nur nähert.

Ein berührungsloser Bildschirm könnte sich eine menschliche Eigenschaft zunutze machen, die lebenswichtig, aber manchmal auch unangenehm ist: Unser Körper schwitzt – und gibt durch winzige Poren in der Haut ständig Wassermoleküle ab. Forscher vom Max-Planck-Institut für Festkörperforschung in Stuttgart haben jetzt die Transpiration eines Fingers sichtbar gemacht – mit einem besonderen Feuchtigkeitssensor. Dieser spricht sofort an, sobald sich ihm etwa ein Zeigefinger bis auf wenige Millimeter nähert. Dabei wird die distanzabhängige Feuchtigkeitsmenge in ein elektrisches Signal oder in eine Farbänderung umgewandelt und kann somit gemessen werden.

Antimon-Phosphorsäure bringt dafür die nötigen Voraussetzungen mit. Dabei handelt es sich um einen bei Raumtemperatur kristallinen Feststoff, dessen Struktur aus schichtartig angeordneten Antimon-, Phosphor-, Sauerstoff- und Wasserstoffatomen aufgebaut ist. „Von diesem Material weiß man schon länger, dass es Feuchtigkeit gut aufnehmen kann und dabei stark quillt“, erklärt Pirmin Ganter, Doktorand in der Gruppe von Bettina Lotsch am Max-Planck-Institut für Festkörperforschung und am Department Chemie der Ludwig-Maximilians-Universität München. Diese Wasseraufnahme verändert auch die Eigenschaften des Materials. So nimmt mit der Anzahl der eingelagerten Wassermoleküle etwa die elektrische Leitfähigkeit zu. Diese kann somit als Maß für die umgebende Feuchtigkeit dienen.

Eine feuchtigkeitsempfindliche Sandwich-Nanostruktur ändert auch ihre Farbe

Doch die Forscher haben gar nicht so sehr im Sinn, einen neuen Feuchtigkeitssensor zu entwickeln. Ihnen geht es um den Einsatz in berührungslosen Displays. „Da diese Sensoren sehr lokal auf Feuchtigkeitserhöhung reagieren, ist es vorstellbar, dass sich ein solches Material mit feuchtigkeitsabhängigen Eigenschaften auch für berührungslos steuerbare Displays und Monitore verwenden lässt“, so Ganter. Bei derartigen Touchless-Screens müsste sich ein Finger dem Bildschirm nur nähern, um etwa die elektrischen oder optischen Eigenschaften – und damit das Eingabe-Signal – an einer konkreten Stelle des Bildschirms zu verändern.

Auf Basis der Antimon-Phosphate entwickelten die Stuttgarter Forscher nun eine photonische Nanostruktur, die auf Feuchtigkeit mit einer Farbänderung reagiert. „Im Falle einer Bildschirmanwendung hätte der Nutzer dann ein sichtbares Feedback für seine Fingersteuerung“, erklärt Katalin Szendrei, ebenfalls Doktorandin in der Gruppe von Bettina Lotsch. Zu diesem Zweck erzeugten die Forscher ein mehrlagiges Sandwich, in dem sich ultradünne Antimon-Phosphat-Schichten jeweils mit Lagen entweder aus Siliciumdioxid- (SiO2) oder Titandioxid-Nanopartikeln (TiO2) abwechseln. Der Stapel aus insgesamt mehr als zehn Schichten erreichte am Ende eine Höhe von wenig mehr als einem Millionstel Meter.

Zum einen lässt sich die Farbe des Sandwich-Materials über die Schichtdicken der Lagen einstellen. Zum anderen verändert sich die Farbe des Sandwichs, wenn die Forscher, etwa durch einen sich nähernden Finger, die relative Luftfeuchtigkeit in unmittelbarer Nähe des Materials erhöhen. „Der Grund dafür liegt in der Einlagerung von Wassermolekülen in die Antimon-Phosphat-Schichten, wodurch die Schichten stark aufquellen“, erklärt Katalin Szendrei. „Da sich auf diese Weise die Schichtdicke ändert, wechselt auch die Farbe des Sensors, die ähnlich erzeugt wird wie die Farbe etwa eines Schmetterlingsflügels oder in Perlmutt.“

Das Material spricht binnen weniger Millisekunden auf die Feuchtigkeitsänderung an

Dieses Verhalten ist prinzipiell bekannt und charakteristisch für sogenannte photonische Kristalle. Noch nie zuvor allerdings hatten Forscher eine so starke Farbänderung beobachtet wie jetzt in Stuttgart. „Die Farbe der Nanostruktur schlägt bei der Annäherung eines Fingers beispielsweise von Blau nach Rot um. Somit lässt sich die Farbe abhängig von der Menge des aufgenommenen Wasserdampfs durch das gesamte sichtbare Spektrum durchstimmen“, betont Bettina Lotsch.

Der neue Ansatz der Forscher besticht aber nicht nur durch seinen deutlichen Farbumschlag. Wichtig ist auch, dass das Material binnen weniger Millisekunden auf die Feuchtigkeitsänderung ansprach – und damit vergleichsweise schnell. Bei früher untersuchten Materialien waren Ansprechzeiten von etlichen Sekunden oder mehr üblich. Viel zu langsam also für den Einsatz in der Praxis. Und noch etwas kommt hinzu, das frühere Materialien nicht immer erfüllten: Die Sandwich-Struktur aus Antimon-Phosphat und den Oxid-Nanopartikeln erweist sich als chemisch äußerst stabil und spricht selektiv auf Wasserdampf an.

Eine Schutzschicht vor chemischen Einflüssen muss Feuchtigkeit passieren lassen

Die Forscher können sich ihre Materialien nicht nur in künftigen Generationen von Smartphones, Tablets oder Notebooks vorstellen. „Vielerorts wo Menschen derzeit Displays berühren müssen, um zu navigieren, sind schließlich auch berührungslos arbeitende Bildschirme denkbar“, so Bettina Lotsch. Etwa an Bank- oder Fahrkartenautomaten oder auch an der Gemüsewaage im Supermarkt. Gerade bei Displays im öffentlichen Raum, die von vielen Menschen genutzt werden, hätte eine berührungslose Variante klar hygienische Vorteile.

Bevor es zu solchen Einsätzen kommt, müssen die Wissenschaftler aber noch weitere Herausforderungen meistern. Wichtig ist zum Beispiel, dass sich die Nanostrukturen wirtschaftlich herstellen lassen. Um Verschleiß zu minimieren, müssten die Strukturen bei einer Verwendung etwa als Display noch mit einer Schutzschicht überzogen werden. Diese wiederum muss hinsichtlich der Anforderungen einen Spagat machen: Einerseits muss sie die feuchtigkeitsempfindlichen Schichten vor chemischen und mechanischen Einflüssen schützen. Zum anderen muss sie Feuchtigkeit natürlich passieren lassen. Die Stuttgarter Forscher haben dafür aber schon eine Idee. Mit einem Kooperationspartner wollen sie diese nun umsetzen.


Ansprechpartner

Prof. Dr. Bettina V. Lotsch
Ludwig-Maximilians Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1610

E-Mail: b.lotsch@fkf.mpg.de


Katalin Szendrei
Ludwig-Maximilians-Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 89 2180-77190

E-Mail: K.Szendrei@fkf.mpg.de


Pirmin Ganter
Ludwig-Maximilians-Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1677

E-Mail: p.ganter@fkf.mpg.de


Originalpublikation
Katalin Szendrei, Pirmin Ganter, Olalla Sànchez-Sobrado, Roland Eger, Alexander Kuhn und Bettina V. Lotsch

Touchless Optical Finger Motion Tracking based on 2D Nanosheets with Giant Moisture Responsiveness

Advanced Materials, 23.September 2015 ; DOI: 10.1002/adma.201503463

Prof. Dr. Bettina V. Lotsch | Max-Planck-Institut für Festkörperforschung, Stuttgart
Weitere Informationen:
https://www.mpg.de/9664205/beruehrungslos-touchless-bildschirm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie