Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Touchless- statt Touchscreen

30.09.2015

Berührungslose Bildschirme sprechen auf Feuchtigkeit an, die der menschliche Körper abgibt

Touchscreens sind praktisch, noch praktischer aber wären Touchless-Screens. Denn auch wenn mit berührungsempfindlichen Bildschirmen der Siegeszug der Smartphones begann und Bank- oder Fahrkartenautomaten über sie gesteuert werden, haben sie einige Nachteile.


Berührungslose Farbänderung: Eine Struktur, in der sich Schichten aus Antimonphosphat und Oxid-Nanopartikeln abwechseln, erzeugt Farbe auf dieselbe Weise wie ein Schmetterlingsflügel oder Perlmutt. Die Farbe wechselt, wenn sich ihr ein Finger bis auf wenige Millimeter annähert. Denn das Material nimmt dann die Feuchtigkeit auf, die der Finger abgibt.

© Advanced Materials 2015/MPI für Festkörperforschung

So zeigen Touchscreens mit der Zeit mechanischen Verschleiß und wirken als Übertragungsweg für Bakterien und Viren. Um das zu vermeiden, haben Forscher des Stuttgarter Max-Planck-Instituts für Festkörperforschung und der Ludwig-Maximilians-Universität München nun Nanostrukturen entwickelt, die ihre elektrischen und wahlweise auch ihre optischen Eigenschaften ändern, sobald sich ihnen ein Finger nur nähert.

Ein berührungsloser Bildschirm könnte sich eine menschliche Eigenschaft zunutze machen, die lebenswichtig, aber manchmal auch unangenehm ist: Unser Körper schwitzt – und gibt durch winzige Poren in der Haut ständig Wassermoleküle ab. Forscher vom Max-Planck-Institut für Festkörperforschung in Stuttgart haben jetzt die Transpiration eines Fingers sichtbar gemacht – mit einem besonderen Feuchtigkeitssensor. Dieser spricht sofort an, sobald sich ihm etwa ein Zeigefinger bis auf wenige Millimeter nähert. Dabei wird die distanzabhängige Feuchtigkeitsmenge in ein elektrisches Signal oder in eine Farbänderung umgewandelt und kann somit gemessen werden.

Antimon-Phosphorsäure bringt dafür die nötigen Voraussetzungen mit. Dabei handelt es sich um einen bei Raumtemperatur kristallinen Feststoff, dessen Struktur aus schichtartig angeordneten Antimon-, Phosphor-, Sauerstoff- und Wasserstoffatomen aufgebaut ist. „Von diesem Material weiß man schon länger, dass es Feuchtigkeit gut aufnehmen kann und dabei stark quillt“, erklärt Pirmin Ganter, Doktorand in der Gruppe von Bettina Lotsch am Max-Planck-Institut für Festkörperforschung und am Department Chemie der Ludwig-Maximilians-Universität München. Diese Wasseraufnahme verändert auch die Eigenschaften des Materials. So nimmt mit der Anzahl der eingelagerten Wassermoleküle etwa die elektrische Leitfähigkeit zu. Diese kann somit als Maß für die umgebende Feuchtigkeit dienen.

Eine feuchtigkeitsempfindliche Sandwich-Nanostruktur ändert auch ihre Farbe

Doch die Forscher haben gar nicht so sehr im Sinn, einen neuen Feuchtigkeitssensor zu entwickeln. Ihnen geht es um den Einsatz in berührungslosen Displays. „Da diese Sensoren sehr lokal auf Feuchtigkeitserhöhung reagieren, ist es vorstellbar, dass sich ein solches Material mit feuchtigkeitsabhängigen Eigenschaften auch für berührungslos steuerbare Displays und Monitore verwenden lässt“, so Ganter. Bei derartigen Touchless-Screens müsste sich ein Finger dem Bildschirm nur nähern, um etwa die elektrischen oder optischen Eigenschaften – und damit das Eingabe-Signal – an einer konkreten Stelle des Bildschirms zu verändern.

Auf Basis der Antimon-Phosphate entwickelten die Stuttgarter Forscher nun eine photonische Nanostruktur, die auf Feuchtigkeit mit einer Farbänderung reagiert. „Im Falle einer Bildschirmanwendung hätte der Nutzer dann ein sichtbares Feedback für seine Fingersteuerung“, erklärt Katalin Szendrei, ebenfalls Doktorandin in der Gruppe von Bettina Lotsch. Zu diesem Zweck erzeugten die Forscher ein mehrlagiges Sandwich, in dem sich ultradünne Antimon-Phosphat-Schichten jeweils mit Lagen entweder aus Siliciumdioxid- (SiO2) oder Titandioxid-Nanopartikeln (TiO2) abwechseln. Der Stapel aus insgesamt mehr als zehn Schichten erreichte am Ende eine Höhe von wenig mehr als einem Millionstel Meter.

Zum einen lässt sich die Farbe des Sandwich-Materials über die Schichtdicken der Lagen einstellen. Zum anderen verändert sich die Farbe des Sandwichs, wenn die Forscher, etwa durch einen sich nähernden Finger, die relative Luftfeuchtigkeit in unmittelbarer Nähe des Materials erhöhen. „Der Grund dafür liegt in der Einlagerung von Wassermolekülen in die Antimon-Phosphat-Schichten, wodurch die Schichten stark aufquellen“, erklärt Katalin Szendrei. „Da sich auf diese Weise die Schichtdicke ändert, wechselt auch die Farbe des Sensors, die ähnlich erzeugt wird wie die Farbe etwa eines Schmetterlingsflügels oder in Perlmutt.“

Das Material spricht binnen weniger Millisekunden auf die Feuchtigkeitsänderung an

Dieses Verhalten ist prinzipiell bekannt und charakteristisch für sogenannte photonische Kristalle. Noch nie zuvor allerdings hatten Forscher eine so starke Farbänderung beobachtet wie jetzt in Stuttgart. „Die Farbe der Nanostruktur schlägt bei der Annäherung eines Fingers beispielsweise von Blau nach Rot um. Somit lässt sich die Farbe abhängig von der Menge des aufgenommenen Wasserdampfs durch das gesamte sichtbare Spektrum durchstimmen“, betont Bettina Lotsch.

Der neue Ansatz der Forscher besticht aber nicht nur durch seinen deutlichen Farbumschlag. Wichtig ist auch, dass das Material binnen weniger Millisekunden auf die Feuchtigkeitsänderung ansprach – und damit vergleichsweise schnell. Bei früher untersuchten Materialien waren Ansprechzeiten von etlichen Sekunden oder mehr üblich. Viel zu langsam also für den Einsatz in der Praxis. Und noch etwas kommt hinzu, das frühere Materialien nicht immer erfüllten: Die Sandwich-Struktur aus Antimon-Phosphat und den Oxid-Nanopartikeln erweist sich als chemisch äußerst stabil und spricht selektiv auf Wasserdampf an.

Eine Schutzschicht vor chemischen Einflüssen muss Feuchtigkeit passieren lassen

Die Forscher können sich ihre Materialien nicht nur in künftigen Generationen von Smartphones, Tablets oder Notebooks vorstellen. „Vielerorts wo Menschen derzeit Displays berühren müssen, um zu navigieren, sind schließlich auch berührungslos arbeitende Bildschirme denkbar“, so Bettina Lotsch. Etwa an Bank- oder Fahrkartenautomaten oder auch an der Gemüsewaage im Supermarkt. Gerade bei Displays im öffentlichen Raum, die von vielen Menschen genutzt werden, hätte eine berührungslose Variante klar hygienische Vorteile.

Bevor es zu solchen Einsätzen kommt, müssen die Wissenschaftler aber noch weitere Herausforderungen meistern. Wichtig ist zum Beispiel, dass sich die Nanostrukturen wirtschaftlich herstellen lassen. Um Verschleiß zu minimieren, müssten die Strukturen bei einer Verwendung etwa als Display noch mit einer Schutzschicht überzogen werden. Diese wiederum muss hinsichtlich der Anforderungen einen Spagat machen: Einerseits muss sie die feuchtigkeitsempfindlichen Schichten vor chemischen und mechanischen Einflüssen schützen. Zum anderen muss sie Feuchtigkeit natürlich passieren lassen. Die Stuttgarter Forscher haben dafür aber schon eine Idee. Mit einem Kooperationspartner wollen sie diese nun umsetzen.


Ansprechpartner

Prof. Dr. Bettina V. Lotsch
Ludwig-Maximilians Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1610

E-Mail: b.lotsch@fkf.mpg.de


Katalin Szendrei
Ludwig-Maximilians-Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 89 2180-77190

E-Mail: K.Szendrei@fkf.mpg.de


Pirmin Ganter
Ludwig-Maximilians-Universität München

Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1677

E-Mail: p.ganter@fkf.mpg.de


Originalpublikation
Katalin Szendrei, Pirmin Ganter, Olalla Sànchez-Sobrado, Roland Eger, Alexander Kuhn und Bettina V. Lotsch

Touchless Optical Finger Motion Tracking based on 2D Nanosheets with Giant Moisture Responsiveness

Advanced Materials, 23.September 2015 ; DOI: 10.1002/adma.201503463

Prof. Dr. Bettina V. Lotsch | Max-Planck-Institut für Festkörperforschung, Stuttgart
Weitere Informationen:
https://www.mpg.de/9664205/beruehrungslos-touchless-bildschirm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften