Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Topologische Isolatoren - Neue Hoffnungsträger für die Computertechnologie

28.06.2012
Streit um Topologische Isolatoren: Wissenschaftler weisen die Stabilität ihrer Oberflächenzustände nach. Damit erheben sie die neue Materialklasse zum Hoffnungsträger der Computertechnologie.

Topologische Isolatoren sind eine neue, vor wenigen Jahren entdeckte Materialklasse. Ihre herausragende Eigenschaft besteht darin, im Inneren elektrisch isolierend zu sein, an der Oberfläche bilden sie jedoch leitende Zustände aus. Das Besondere an topologischen Isolatoren ist die extreme Stabilität ihrer Oberflächenzustände.


Spektren einer Drittel-Atomlage Eisen auf Bismutselenid. Die sich kreuzenden Linien zeigen den Oberflächenzustand. Oberer und unterer Teil der Abbildung sind symmetrisch zueinander aufgrund der Zeitumkehrsymmetrie, die auch den Kreuzungspunkt schützt.
Abbildung: HZB/Rader

Wissenschaftler vom Helmholtz-Zentrum Berlin (HZB) haben nun in Bismutselenid, dem derzeit bekanntesten topologischen Isolator, den Oberflächenzustand auch noch nach Beschichten der Oberfläche mit Eisen beobachtet. Bisher gingen Wissenschaftler davon aus, dass die Stabilität an Kontaktstellen zu magnetischen Materialien verloren geht. Eine solche Grenzfläche aus topologischem Isolator und Ferromagnet ist für die Entwicklung neuer Speichermedien in der Computerindustrie von großem Interesse. Die Erkenntnis hat Markus Scholz aus der Abteilung Magnetisierungsdynamik des HZB im Rahmen seiner Doktorarbeit gewonnen und jetzt im Fachjournal Physical Review Letters veröffentlicht (DOI: 10.1103/PhysRevLett.108.256810).

Topologische Isolatoren verdanken die Stabilität ihrer Oberflächenzustände einem grundlegenden physikalischen Prinzip, der Zeitumkehrsymmetrie. Danach gelten physikalische Gesetze in gleicher Weise, auch wenn die Zeit rückwärts laufen würde. Auf die Bewegung von Elektronen in einem Festkörper angewandt heißt das, dass die Naturgesetze zum Tragen kommen, egal ob sich ein Elektron von links nach rechts oder – nach Zeitumkehr – von rechts nach links bewegt. Dabei gilt: Wenn ein Elektron in eine bestimmte Richtung läuft, zum Beispiel nach links, muss ihm ein Zustand mit nach oben gerichtetem Spin zur Verfügung stehen. Ein entgegengesetzt laufendes Elektron benötigt dann einen Zustand mit nach unten gerichtetem Spin.

In den topologischen Isolatoren ist diese Kopplung von Bewegungsrichtung und Spin so stark, dass die Elektronen an der Oberfläche stets gezwungen sind, zur Leitung von elektrischem Strom zur Verfügung zu stehen. Die leitfähigen Oberflächenzustände sind dadurch geschützt.

Anders verhält es sich in ferromagnetischen Materialien: Dort ist die Spinrichtung durch magnetischen Nord- und Südpol festgelegt. Die Zeitumkehrsymmetrie ist hier gebrochen. Bringt man beide Materialien – Ferromagneten und topologischen Isolator – in Kontakt, so sollte sich die Symmetriebrechung des Ferromagneten auf den topologischen Isolator übertragen. Er müsste, so die bisherige Annahme, auch an seiner Oberfläche isolierend werden. Das HZB-Team um Markus Scholz hat jetzt das Gegenteil nachgewiesen.

„Nach der Entdeckung der topologischen Isolatoren herrschte zunächst große Euphorie“, sagt Markus Scholz: „Die Materialklasse war der große Hoffnungsträger in der Computertechnologie. Dann setzte sich die Annahme durch, dass ein topologisch geschützter Zustand – wie der Oberflächenzustand von Bismutselenid – extrem empfindlich auf magnetische Materialien reagieren soll – und das war eine große Enttäuschung.“ Denn für Anwendungen in Computerbauteilen, wie neuen Speichermedien, ist es von enormer Bedeutung, dass der Oberflächenzustand auch in unmittelbarer Nähe eines magnetischen Materials stabil bleibt.

Scholz hat nun die Ehre der neuen Materialien gerettet: Dafür stellte der Wissenschaftler zunächst frische, saubere Bruchkanten des Kristalls Bismutselenid her – mit Hilfe von Klebeband, wie Scholz beschreibt: „Bismutselenid ist aus struktureller Sicht eher zweidimensional. Das heißt, auf fünf Atomlagen, die sehr kräftig gebunden sind, folgt eine mit schwacher Bindung. Dort reißt der Kristall beim Abziehen des Klebebands ab.“ Die frische Bruchkante hat das Team dann hauchdünn mit Eisen überzogen. Scholz: „So etwas ganz sauber und nach höchsten Standards zu machen, damit hat unsere Arbeitsgruppe sehr große Erfahrung.“

Anschließend untersuchten die Wissenschaftler die beschichtete Kristalloberfläche mit einer extrem oberflächenempfindlichen Messmethode, der winkelaufgelösten Photoemissionsspektroskopie (ARPES). „Damit können wir zwar nur ein bis zwei Atomlagen tief in die Probe schauen – sehen aber extrem genau, was dort gerade passiert“, so Dr. Jaime Sánchez-Barriga, Koautor der Studie. Das Ergebnis: Bismutselenid zeigt seine topologischen Oberflächenzustände auch nach der Beschichtung mit Eisen. „Damit sind neue Forschungsanstrengungen gerechtfertigt, Bismutselenid für Anwendungen in der Computerforschung weiter zu entwickeln“, sagt Sánchez-Barriga: „Denkbar sind beispielsweise magnetische Transistoren.“

Die HZB-Forscher werden Gelegenheit haben, diese Forschung weiter voranzutreiben. Die Deutsche Forschungsgemeinschaft hat gerade bekannt gegeben, dass sie ein Schwerpunktprogramm zu topologischen Isolatoren einrichten wird, in dem ungefähr fünfundzwanzig bis dreißig Forschergruppen gefördert werden sollen. Koordiniert wird dieses Programm von Dr. Oliver Rader, der auch die Doktorarbeit von Markus Scholz betreut hat.

Hintergrund:
Topologische Isolatoren wurden im Jahr 2005 postuliert und werden inzwischen in vielen Experimenten beobachtet. In der Mathematik beschäftigt sich die Topologie mit Größen, die unter kontinuierlicher Veränderung konstant bleiben. Ein Beispiel ist ein Knoten, den man an einem Seil verschieben, aber nicht lösen kann, zumindest sofern die Enden fest sind. Seile mit und ohne Knoten bezeichnet man dann als topologisch verschieden. Auch Elektronen können in bestimmten Fällen solche topologischen Eigenschaften haben. Die 2005 entdeckte feste Kopplung von Spin und Bewegungsrichtung ist ein Beispiel für eine solche Verknotung. Ob ein magnetisches Material in der Lage ist, diese Verknotung zu lösen, das ist Gegenstand der aktuellen Untersuchung.
Kontakt:
Markus Scholz
Abteilung Magnetisierungsdynamik
Tel.: +49 (0)30-8062-12950
markus.scholz@helmholtz-berlin.de
Priv.-Doz. Dr. Oliver Rader
Abteilung Magnetisierungsdynamik
Tel.: +49 (0)30-8062-12950
rader@helmholtz-berlin.de
Pressestelle:
Hannes Schlender
Abteilung Kommunikation
Tel.: +49 30 8062-42414
Fax: +49 30 8062-42998
hannes.schlender@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de
http://prl.aps.org/abstract/PRL/v108/i25/e256810

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten