Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

New technology in the magnetic cooling of chips

20.02.2013
Luis Hueso, the CICnanoGUNE researcher, together with researchers from the University of Cambridge, among others, has developed a new technology in the magnetic cooling of chips based on the straining of materials. Compared with the current technologies, this advance enables the impact on the environment to be lessened. The work has been published recently in the prestigious journal Nature Materials.
Current cooling systems, be they refrigerators, freezers or air conditioning units, make use of the compression and expansion of a gas. When the gas is compressed, it changes into a liquid state and when it expands it evaporates once again. To evaporate, it needs heat, which it extracts from the medium it touches and that way cools it down. However, this system is harmful for the environment and, what is more, the compressors used are not particularly effective.

One of the main alternatives that is currently being explored is magnetic cooling. It consists of using a magnetic material instead of a gas, and magnetizing and demagnetizing cycles instead of compression-expansion cycles. Magnetic cooling is a technique based on the magnetocaloric effect, in other words, it is based on the properties displayed by certain materials to modify their temperature when a magnetic field is applied to them. However, the applying of a magnetic field leads to many problems in current miniaturized technological devices (electronic chips, computer memories, etc.), since the magnetic field can interact negatively owing to its effect on nearby units. In this respect, the quest for new ways of controlling the magnetization is crucial.

Magnetism without magnetic fields

The researchers Luis Hueso, Andreas Berger and Odrej Hovorka of nanoGUNE have discovered that by using the straining of materials, they can get around the problems of applying a magnetic field. “By straining the material and then relaxing it an effect similar to that of a magnetic field is created, thus inducing the magnetocaloric effect responsible for cooling,” explains Luis Hueso, leader of the nanodevices group at nanoGUNE and researcher in this study.

“This new technology enables us to have a more local and more controlled cooling method, without interfering with the other units in the device, and in line with the trend in the miniaturization of technological devices,” adds Hueso.

20-nanometre films consisting of lanthanum, calcium, manganese and oxygen (La0.7Ca0.3MnO3) have been developed. According to Hueso, “the aim of this field of research is to find materials that are efficient, economical and environmentally friendly.”

“The idea came about at Cambridge University and among various groups in the United Kingdom, France, Ukraine and the Basque Country we have come up with the right material and an effective technique for cooling electronic chips, computer memories and all these types of applications in microelectronics. Technologically, there would not be any obstacle to using them in fridges, freezers, etc. but economically it is not worthwhile because of the size,” stresses Hueso.

Today, most of the money spent on the huge dataservers goes on cooling. That is why this new technology could be effective in applications of this kind. Likewise, one of the great limitations that computer processors have today is that they cannot operate as fast as one would like because they can easily overheat. “If we could cool them down properly, they would be more effective and could work faster,” adds Hueso.

Dr Hueso stresses that this is a very interesting subject with respect to future patents.

Luis Hueso

Luis Hueso (Madrid, 1974) is an Ikerbasque researcher and leads the nanodevices team at nanoGUNE. He has a PhD in Physics from the University of Santiago de Compostela. Between 2002 and 2005 he was a Marie Curie fellow at Cambridge University where he developed a project on spin transport in carbon nanotubes. In 2006 he moved to the Consiglio Nazionale delle Ricerche (Italy) and in 2007 was appointed Professor at the University of Leeds. Since 2008, Luis Hueso has been pursuing his scientific research activities in the nanodevices team at nanoGUNE. He has been exploring materials and functionalities to be able to develop new electronic devices that constitute a revolution with respect to the current silicon-based ones, which could soon be reaching the limits of their capacity. It was in fact this work that in 2012 earned him the prestigious Starting Grant awarded by the European Research Council to the tune of 1.3 million euros.

Publication reference

X.Moya, L.E. Hueso, F. Maccherozzi, A.I. Tovstolytkin, D.I. Podyalovskii, C. Ducati, L.C. Phillips, M. Ghidini, O. Hovorka, A. Berger, M.E. Vickers, E. Defay, S.S. Dhesi and N. D. Mathur. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nature Materials. DOI: 10.1038/NMAT3463.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Materials Sciences:

nachricht Graphene origami as a mechanically tunable plasmonic structure for infrared detection
25.04.2018 | University of Illinois College of Engineering

nachricht Scientists create innovative new 'green' concrete using graphene
24.04.2018 | University of Exeter

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics