Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Symphonie im Stahl

23.03.2015

Duett atomarer und magnetischer Resonanzen macht Stähle bei hohen Temperaturen stabil

Was macht Eisen bei hohen Temperaturen stabil? Seit langem beschäftigen sich Materialwissenschaftler mit dieser Frage, die sowohl für die Stahlherstellung als auch dessen Verarbeitung von immenser Relevanz ist.


Man kann sich die Eisenatome (im Bild als Kugeln dargestellt) als kleine Magneten vorstellen, die bei zunehmender Temperatur ihre Ausrichtung umdrehen (graue Pfeile).

Max-Planck-Institut für Eisenforschung GmbH

Nun gelang es Forschern der Abteilung Computergestütztes Materialdesign am Düsseldorfer Max-Planck-Institut für Eisenforschung (MPIE) in Zusammenarbeit mit Kollegen vom California Institute of Technology (Caltech) mit völlig neuen theoretischen Ansätzen und aufwendigen experimentellen Untersuchungen dieser Frage auf den Grund zu gehen.

Eisen gehört zu den kristallinen Materialien, das heißt die Eisenatome sind in einem Gitter angeordnet und weisen eine bestimmte Struktur auf. Mit zunehmender Temperatur beginnen die Atome um ihre Plätze im Gitter mehr und mehr zu schwingen, ähnlich den Saiten einer Geige, die stärker gestrichen oder gezupft werden - Wissenschaftler sprechen hier von Gitterschwingungen.

Bei Stählen, die überwiegend aus magnetischen Eisenatomen bestehen, existieren neben diesen atomaren Schwingungen auch magnetische Anregungen. Hierfür kann man sich jedes Eisenatom als kleinen Magneten vorstellen, der bei hohen Temperaturen seine Ausrichtung umdreht und ähnlich wie das Schließen von Flötenventilen durch den neuen Zustand für ganz eigene ‚Klänge‘ in einem solchen Duett sorgt.

Seit langer Zeit wird vermutet, dass die Stabilität von Eisen bei hohen Temperaturen durch eine Kopplung der atomaren Schwingungen und magnetischen Anregungen realisiert wird. Auch in einem Orchester spielen Streicher und Bläser nicht unabhängig voneinander, sondern suchen ganz gezielt Resonanzen und Harmonien. Bisher war es aber weder experimentell noch theoretisch möglich, solchen atomaren Symphonien ‚zuzuhören‘.

Eine am MPIE neu entwickelte Methode, die Konzepte aus verschiedensten Zweigen der theoretischen Physik miteinander verbindet, erlaubt es den Forschern nun erstmals den gegenseitigen Einfluss der beiden atomaren Symphoniker über den kompletten Temperaturbereich zu bestimmen.

„Es wurde schon seit einiger Zeit spekuliert, dass die strukturelle Stabilität von Eisen eng verknüpft ist mit einer Wechselwirkung zwischen den magnetischen Anregungen und der atomaren Bewegung. Es freut uns sehr, dass wir nun diese Kopplung beschreiben können und darüber hinaus unsere theoretischen Vorhersagen auch mit den Messungen unserer experimentellen Kollegen vom Caltech übereinstimmen.“, so Fritz Körmann, Wissenschaftler am MPIE. Dabei zeigte sich dieser, in der Physik als Magnon-Phonon-Wechselwirkung bezeichneter Einfluss, als unerwartet stark und entscheidend für die Stabilität von Stählen bei mehreren 100 °C.

Die theoretischen Vorhersagen der Wissenschaftler am MPIE wurden durch ein Team von Caltech-Wissenschaftlern experimentell untermauert. Hierfür wurden am renommierten Argonne National Laboratory in den USA Röntgenstrahlexperimente durchgeführt und detailliert ausgewertet. Das Ergebnis beeindruckte auch Brent Fultz, Leiter der experimentellen Studie und Professor für Materialwissenschaften und angewandte Physik am Caltech:

„Typischerweise nehmen wir an, dass die Wechselwirkung zweier unabhängiger Prozesse klein ist. Die detaillierte Analyse der Messungen zur Bestimmung der interatomaren Kräfte zeigt uns wie stark die Gitterschwingungen durch den Magnetismus beeinflusst werden. Dies wurde sogar noch beeindruckender durch die Computersimulationen gezeigt, bei denen es möglich ist die Wechselwirkung an- und auszuschalten.“

Die neuen Einblicke in die Wechselwirkungen und die thermodynamische Stabilität von Eisen bilden eine Grundlage für die systematische Weiterentwicklung und das Design neuer Hochtemperatur-Stähle. Die Tatsache, dass wir nun in der Lage sind die fundamentalen Mechanismen zu entschlüsseln, die für das für die Stahlentwicklung so wichtige thermodynamische Phasendiagram von Eisen verantwortlich sind, ist der systematischen Entwicklung neuer computergestützter Methoden von Fritz, Tilmann und Blazej in den letzten Jahren zu verdanken.“, sagt Jörg Neugebauer, Direktor am Max-Planck-Institut für Eisenforschung.

„Nur durch die Kombination verschiedener wissenschaftlicher Ansätze zum Beispiel aus der Quantenmechanik, der statistischen Mechanik und der Thermodynamik, und durch den Einsatz leistungsstarker Supercomputer wurde es möglich, die komplexen und bisher nicht verstandenen dynamischen Phänomene in einem der technologisch bedeutsamsten strukturellen Materialen zu verstehen.“

Im Fokus der Wissenschaftler sind momentan Eisen-Mangan-Stähle, wie zum Beispiel TRIP-Stähle (TRIP steht für Transformation Induced Plasticity), welche sich durch ihre hohe Festigkeit bei gleichzeitig guter Verformbarkeit auszeichnen. Dafür werden die theoretischen Konzepte am MPIE jetzt derart verallgemeinert, dass Materialien mit verschiedensten Legierungskomponenten behandelt werden können. Denn ähnlich wie ein Orchester nicht nur aus Geigen und Trompeten besteht, lebt auch ein Stahl vom Zusammenspiel verschiedenster Elemente. Es steckt also noch viel Musik in diesem Material.

Originalveröffentlichung:

F. Körmann, B. Grabowski, B. Dutta, T. Hickel, L. Mauger, B. Fultz, and J. Neugebauer "Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment," Phys. Rev. Lett. 113, 165503 (2014).

Autoren der Pressemeldung: Fritz Körmann, Tilmann Hickel & Yasmin Ahmed Salem

Weitere Informationen:

http://www.mpie.de

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

nachricht Warum Teige an Oberflächen kleben
14.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten