Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stoßdämpfend wie eine Pomelo, hart und stichfest wie Macadamia-Nüsse

17.03.2016

Die Schalen der Früchte inspirieren zur Entwicklung neuer Materialien

Das Material, auf das die Werkstoffwissenschaftler Claudia Fleck und Paul Schüler immer wieder Druck ausüben, gibt diesem nach und nimmt dabei effizient die übertragene Energie auf. Es ist aus einer Aluminiumlegierung, extrem leicht und weist eine offenporige Schaumstruktur auf.

Dieser sogenannte bio-inspirierte Metallschaum ist der Schale der Zitrusfrucht Pomelo nachempfunden und das Ergebnis eines gemeinsamen Forschungsprojektes der TU Berlin, RWTH Aachen und der Universität Freiburg.

Pomelos, diese größten und schwersten Zitrusfrüchte der Welt, überstehen einen Sturz aus zehn Metern Höhe auf einen harten Betonboden und absorbieren beim Aufprall bis über 90 Prozent der kinetischen Energie. Ihre zwei bis drei Zentimeter dicke, extrem stoßdämpfende Schale sorgt für dieses Wunder. Wie aber ist dieses Wunder möglich?

„Die hohe und effiziente Energieabsorption der Pomelo-Schale liegt in ihrer inneren Struktur begründet“, sagt Dr.-Ing. Paul Schüler vom TU-Fachgebiet Werkstofftechnik, das von Prof. Dr.-Ing. Claudia Fleck geleitet wird. Zusammen mit den Aachener und Freiburger Kollegen wurde diese Struktur erforscht.

Licht-, rasterelektronenmikroskopische und computertomografische Untersuchungen ergaben: Das Innenleben der Pomelo-Schale ist hochkomplex und hierarchisch strukturiert. Hauptcharakteristikum ist eine offenporige Schaumstruktur. Der äußere Randbereich ist sehr fein-, der mittlere großporig und im Übergangsbereich zum Fruchtfleisch hin sind die Poren langgestreckt.

Zudem ist die Schale von steifen und sich verzweigenden Faserbündeln durchzogen, die senkrecht zur Außenseite der Schale verlaufen. „Das enorme spezifische Energieabsorptionsvermögen der Schale wird aber ganz offensichtlich durch die Stege der Schaumstruktur erzeugt. Diese sind innen hohl und mit einer Flüssigkeit gefüllt. Beim Aufprall wird die Flüssigkeit von einem Steg in den anderen gedrückt und bewirkt die stoßdämpfende Eigenschaft.

Die Schale platzt nicht auf und das Fruchtfleisch wird so vorm schnellen Verrotten bewahrt“, erklärt Paul Schüler. Diese Zusammenhänge zwischen Struktur und Eigenschaften aufzuzeigen, also zu verstehen, welche Eigenschaft durch welche Struktur begründet wird, ist ein wichtiger Aspekt in dem gemeinsamen DFG-Forschungsprojekt der drei Universitäten.

Gegenstand der Forschung war auch die Macadamia-Nuss. Die Wissenschaftlerinnen und Wissenschaftler interessierten sich für sie, weil sie im wahrsten Sinne des Wortes extrem schwer zu knacken ist. Die Schale ist nahezu resistent gegen Stiche und Schläge. Die am TU-Fachgebiet Werkstofftechnik durchgeführten mikrostrukturellen Untersuchungen zeigten eine siebenschichtige Sandwichstruktur.

Die äußere Schale weist kugel- bis kartoffelförmige sogenannte Sklereid-Zellen mit dicken Zellwänden auf. Dahinter folgt eine dicke Schicht mit ineinander verflochtenen Sklerenchymfasern. Sklereide und Sklerenchym sind pflanzliches Festigungsgewebe. „Die Festigkeit der Macadamia-Schale beruht nicht auf der Dicke der Schale, sondern auf ihrer Faserstruktur, die andere Nussschalen nicht aufweisen – so unsere Erkenntnis“, sagt Paul Schüler.

Diese Strukturen zu erkennen und zu verstehen ist die eine Seite. Die andere Seite ist, das Wissen darüber anzuwenden, zum Beispiel für die Entwicklung neuer Materialien. „Die Pomelo- und Macadamia-Nussschalen sind herausfordernde Inspirationsquellen für die bionische Entwicklung von Schutz- oder Behältermaterialien“, so Paul Schüler. Dabei geht es in der Bionik aber nicht darum, die Natur eins zu eins nachzubauen. Dafür sind die biologischen Strukturen zu komplex.

Die Wissenschaftler wollen von der Komplexität abstrahieren und bei der Entwicklung neuer Materialien nur die Struktur- und Funktionsprinzipien nutzen, die die gewünschten Eigenschaften im Wesentlichen verantworten. Interessant wäre, so Paul Schüler, ein neues Material zu entwickeln, das die hervorstechenden Eigenschaften der Pomelo-Schale – hohe und energieeffiziente Energieabsorption – und die der Macadamia-Nuss – extreme Festigkeit und Zähigkeit – miteinander kombiniert.

Aus einem solchen Material könnten dann Sturzhelme, Schutzwesten oder Crashabsorber beim Auto hergestellt werden. Und geradezu fantastisch wäre es, gelänge es, die Außenhülle eines Flugzeuges aus einem solchen Material zu bauen, sodass es einen Absturz übersteht und nicht auseinanderbricht. Die Passagiere blieben geschützt. Denn genau diese Funktion erfüllen die Schalen der Pomelo und der Macadamia-Nuss: Sie schützen das Innere.

Das DFG-Forschungsprojekt „Impact resistant hierarchically structured materials based on fruits walls and nutshells“ gehört zum DFG-Schwerpunktprogramm SPP 1420 “Biomimetic Materials Research: Functionality by hierarchical structuring of Materials”.

Weitere Informationen erteilt Ihnen gern:
Prof. Dr.-Ing. Claudia Fleck
TU Berlin
Fachgebiet Werkstofftechnik
Tel.: 030/314-23605
E-Mail: claudia.fleck@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive