Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stoßdämpfend wie eine Pomelo, hart und stichfest wie Macadamia-Nüsse

17.03.2016

Die Schalen der Früchte inspirieren zur Entwicklung neuer Materialien

Das Material, auf das die Werkstoffwissenschaftler Claudia Fleck und Paul Schüler immer wieder Druck ausüben, gibt diesem nach und nimmt dabei effizient die übertragene Energie auf. Es ist aus einer Aluminiumlegierung, extrem leicht und weist eine offenporige Schaumstruktur auf.

Dieser sogenannte bio-inspirierte Metallschaum ist der Schale der Zitrusfrucht Pomelo nachempfunden und das Ergebnis eines gemeinsamen Forschungsprojektes der TU Berlin, RWTH Aachen und der Universität Freiburg.

Pomelos, diese größten und schwersten Zitrusfrüchte der Welt, überstehen einen Sturz aus zehn Metern Höhe auf einen harten Betonboden und absorbieren beim Aufprall bis über 90 Prozent der kinetischen Energie. Ihre zwei bis drei Zentimeter dicke, extrem stoßdämpfende Schale sorgt für dieses Wunder. Wie aber ist dieses Wunder möglich?

„Die hohe und effiziente Energieabsorption der Pomelo-Schale liegt in ihrer inneren Struktur begründet“, sagt Dr.-Ing. Paul Schüler vom TU-Fachgebiet Werkstofftechnik, das von Prof. Dr.-Ing. Claudia Fleck geleitet wird. Zusammen mit den Aachener und Freiburger Kollegen wurde diese Struktur erforscht.

Licht-, rasterelektronenmikroskopische und computertomografische Untersuchungen ergaben: Das Innenleben der Pomelo-Schale ist hochkomplex und hierarchisch strukturiert. Hauptcharakteristikum ist eine offenporige Schaumstruktur. Der äußere Randbereich ist sehr fein-, der mittlere großporig und im Übergangsbereich zum Fruchtfleisch hin sind die Poren langgestreckt.

Zudem ist die Schale von steifen und sich verzweigenden Faserbündeln durchzogen, die senkrecht zur Außenseite der Schale verlaufen. „Das enorme spezifische Energieabsorptionsvermögen der Schale wird aber ganz offensichtlich durch die Stege der Schaumstruktur erzeugt. Diese sind innen hohl und mit einer Flüssigkeit gefüllt. Beim Aufprall wird die Flüssigkeit von einem Steg in den anderen gedrückt und bewirkt die stoßdämpfende Eigenschaft.

Die Schale platzt nicht auf und das Fruchtfleisch wird so vorm schnellen Verrotten bewahrt“, erklärt Paul Schüler. Diese Zusammenhänge zwischen Struktur und Eigenschaften aufzuzeigen, also zu verstehen, welche Eigenschaft durch welche Struktur begründet wird, ist ein wichtiger Aspekt in dem gemeinsamen DFG-Forschungsprojekt der drei Universitäten.

Gegenstand der Forschung war auch die Macadamia-Nuss. Die Wissenschaftlerinnen und Wissenschaftler interessierten sich für sie, weil sie im wahrsten Sinne des Wortes extrem schwer zu knacken ist. Die Schale ist nahezu resistent gegen Stiche und Schläge. Die am TU-Fachgebiet Werkstofftechnik durchgeführten mikrostrukturellen Untersuchungen zeigten eine siebenschichtige Sandwichstruktur.

Die äußere Schale weist kugel- bis kartoffelförmige sogenannte Sklereid-Zellen mit dicken Zellwänden auf. Dahinter folgt eine dicke Schicht mit ineinander verflochtenen Sklerenchymfasern. Sklereide und Sklerenchym sind pflanzliches Festigungsgewebe. „Die Festigkeit der Macadamia-Schale beruht nicht auf der Dicke der Schale, sondern auf ihrer Faserstruktur, die andere Nussschalen nicht aufweisen – so unsere Erkenntnis“, sagt Paul Schüler.

Diese Strukturen zu erkennen und zu verstehen ist die eine Seite. Die andere Seite ist, das Wissen darüber anzuwenden, zum Beispiel für die Entwicklung neuer Materialien. „Die Pomelo- und Macadamia-Nussschalen sind herausfordernde Inspirationsquellen für die bionische Entwicklung von Schutz- oder Behältermaterialien“, so Paul Schüler. Dabei geht es in der Bionik aber nicht darum, die Natur eins zu eins nachzubauen. Dafür sind die biologischen Strukturen zu komplex.

Die Wissenschaftler wollen von der Komplexität abstrahieren und bei der Entwicklung neuer Materialien nur die Struktur- und Funktionsprinzipien nutzen, die die gewünschten Eigenschaften im Wesentlichen verantworten. Interessant wäre, so Paul Schüler, ein neues Material zu entwickeln, das die hervorstechenden Eigenschaften der Pomelo-Schale – hohe und energieeffiziente Energieabsorption – und die der Macadamia-Nuss – extreme Festigkeit und Zähigkeit – miteinander kombiniert.

Aus einem solchen Material könnten dann Sturzhelme, Schutzwesten oder Crashabsorber beim Auto hergestellt werden. Und geradezu fantastisch wäre es, gelänge es, die Außenhülle eines Flugzeuges aus einem solchen Material zu bauen, sodass es einen Absturz übersteht und nicht auseinanderbricht. Die Passagiere blieben geschützt. Denn genau diese Funktion erfüllen die Schalen der Pomelo und der Macadamia-Nuss: Sie schützen das Innere.

Das DFG-Forschungsprojekt „Impact resistant hierarchically structured materials based on fruits walls and nutshells“ gehört zum DFG-Schwerpunktprogramm SPP 1420 “Biomimetic Materials Research: Functionality by hierarchical structuring of Materials”.

Weitere Informationen erteilt Ihnen gern:
Prof. Dr.-Ing. Claudia Fleck
TU Berlin
Fachgebiet Werkstofftechnik
Tel.: 030/314-23605
E-Mail: claudia.fleck@tu-berlin.de

Stefanie Terp | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Sparsamer abheben dank Leichtbau-Luftdüsen
23.10.2017 | Technische Universität Chemnitz

nachricht Stickoxide: Neuartiger Katalysator soll Abgase ohne Zusätze reinigen
23.10.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie