Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stahl im 3-D-Kino: Neue Analysetechnik gibt die Strukturen von Stahl exakt räumlich wieder

19.03.2014

In Brücken, Windrädern und Autos wird viel Stahl verbaut, rund 5.000 Stahlsorten sind auf dem Markt. Doch worin unterscheiden sie sich?

Saarbrücker Materialforscher haben jetzt eine äußerst exakte Analysetechnik entwickelt, die im passenden Maßstab die inneren Strukturen von Stahl abbildet. Das Ergebnis ist ein räumliches Computermodell, in dem sich die Wissenschaftler im Bereich von wenigen Mikrometern bewegen können.


Die 3-D-Grafik zeigt, wie die 2. Phase des Dualphasenstahls eine eigene, plattenähnliche Struktur gebildet hat. Deren räumliche Vernetzung kann man in Walzrichtung durch den Stahl genau verfolgen. Universität des Saarlandes


Die Saarbrücker Materialforscher setzen verschiedene Analysetechniken ein, von der 3-D-Atomsondentomographie bis hin zur neuen Serienschnittechnik, für die Fehleranalyse auch die Röntgentomographie. Universität des Saarlandes

Es macht sichtbar, wie das innere Gefüge von Stahl durch den Produktionsprozess verändert wird. Die klassische zweidimensionale Lichtmikroskopie sagte bisher wenig darüber aus, warum Stahl etwa durch den Walzprozess andere Eigenschaften erhält.

Johannes Webel, der Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes studiert, hat jetzt für die neue 3-D-Analysetechnik auf Basis der Lichtmikroskopie den zweiten Preis des Dörrenberg Studien Award erhalten. Das ist die bundesweit wichtigste Auszeichnung für Bachelorarbeiten zum Thema Stahl.

Für die 3-D-Analyse von Werkstoffen setzen die Saarbrücker Materialwissen-schaftler um Professor Frank Mücklich verschiedene Technologien ein, die für Stahl jedoch nur bedingt geeignet sind.

Im sogenannten Focused-Ion-Beam-Mikroskop werden durch Serienschnitte winzige Bestandteile von Materialien untersucht „Für Stahlproben, die in der Regel als Würfel mit einer Kantenlänge von einem Zentimeter vorliegen, ist diese Analysetechnik jedoch zu feinmaschig. Man würde Wochen benötigen, um inhomogene Strukturen, die etwas grober sind als ein menschliches Haar, auszuwerten und sichtbar zu machen“, erklärt Johannes Webel.

Die Röntgentomographie hingegen, die jeder aus der Medizin kennt, wird in der Materialforschung für Motorblöcke und andere größere Bauteile verwendet. Damit werden vor allem lokale Störungen wie Poren und Risse untersucht. Bei den nur zentimeter¬großen Stahlproben erhält man damit jedoch keine Aufnahmen der komplexen inneren Struktur des Werkstoffs.

„Die Herausforderung war nun, ein bildgebendes Verfahren zu finden, das im Bereich von mindestens einem Tausendstel Millimeter funktioniert und zugleich den Einsatz der Lichtmikroskopie für ein Volumen erlaubt, das auch eine repräsentative Größe hat. Die Analysetechnik sollte außerdem zuverlässig zu handhaben sein und schnell Ergebnisse liefern, zum Beispiel für die Qualitätssicherung während der Stahlproduktion“, sagt Webel.

Der junge Materialforscher konzentrierte sich auf die Lichtmikroskopie, weil diese bisher schon in den Entwicklungsabteilungen der Stahlindustrie eingesetzt wird, aber dort bei klassischer Anwendung nur zweidimensionale Bilder liefert. Die Abbildungstechnik hat außerdem den Nachteil, dass man sie nur bedingt vergleichen und exakt reproduzieren kann. Die Stahloberfläche muss nämlich zuerst mit einer ätzenden Flüssigkeit behandelt werden, damit die Oberfläche, die nach dem Polieren spiegelt, überhaupt Strukturen zeigt.

„Bei diesem Ätzvorgang können kleine Temperaturunterschiede und leichte Abweichungen in der Zusammensetzung der ätzenden Substanz die Mikroskop-Bilder schon völlig verändern. Es kommt auch sehr auf das Geschick des Laboranten an, welche Strukturen im Stahl nachher sichtbar werden“, erläutert der Saarbrücker Student. Er konstruierte deshalb eine eigene Apparatur, bei der nun in einem Durchgang die Stahlprobe exakt geschnitten, poliert, geätzt und mikroskopiert wird.

„Von dem Stahlwürfel werden dort identische Scheiben von einigen Zehntausendstel Millimetern abgetragen. Nach jedem Abtrag wird die Scheibe automatisiert zur Seite geklappt, mit der Ätzung behandelt und abgelichtet. Dann folgt der nächste hauchdünne Abtrag“, beschreibt Johannes Webel das von ihm entwickelte Verfahren. Anschließend werden die Aufnahmen aus dem Lichtmikroskop im Computer zu einem dreidimensionalen Modell zusammengefügt. „Dieses Modell kann man sich wie einen Schweizer Käse vorstellen. Die Käsemasse selbst ist die eine Kristallstruktur, die Löcher bilden eine weitere. Durch verschiedene Farben können wir nun sichtbar machen, wie die beiden Strukturen jeweils räumlich miteinander vernetzt sind“, erklärt Dominik Britz, wissenschaftlicher Mitarbeiter von Professor Mücklich und Betreuer der Forschungsarbeit.

Materialwissenschaftler bezeichneten diese inneren Strukturen von Werkstoffen als Gefüge. Darin grenzten so genannte Körner oder Kristallite einzelne Bereiche ab, die eine bestimmte Kristallstruktur aufweisen, sich aber in ihrer Ausrichtung von den benachbarten Körnern unterscheiden. „Das überraschende Ergebnis war, dass der von uns untersuchte Dualphasenstahl kein homogenes Gemisch der Körner ergeben hat, wie die bisherigen Schliffproben vermuten ließen. Stattdessen hatte die zweite Phase eine eigene, plattenähnliche Struktur gebildet, die in Walzrichtung durch den Stahl miteinander vernetzt ist“, erläutert Britz.

Diese räumliche Vernetzung ließ sich mit den herkömmlichen Aufnahmen aus Lichtmikroskopen nicht darstellen, weil man aus den zweidimensionalen Aufnahmen nicht auf das 3-D-Modell schließen konnte. „Das lässt sich am Beispiel von Schweizer Käse anschaulich erklären. Wenn man in einer Käsescheibe ein rundes Loch sieht, weiß man nicht, ob dieses im Käsestück nur ein kugelförmiger Hohlraum war oder ob sich ein kompliziertes räumliches Netzwerk durch den ganzen Käse erstreckte“, erläutert Webel.

Ähnlich komplex und zerklüftet seien die beiden Strukturen in einem Dualphasenstahl miteinander verwoben. Dies habe erstmals die neue 3-D-Analysetechnik sichtbar gemacht. Der junge Forscher will diese nun weiter entwickeln, damit sie in den Forschungsabteilungen der Stahlindustrie und bei der Qualitätssicherung zum Einsatz kommen kann. Dafür nutzt er die umfangreiche Labortechnik an der Universität des Saarlandes und dem Steinbeis-Forschungszentrum für Werkstofftechnik, das von Professor Frank Mücklich geleitet wird.

Pressefotos, Abbildungen und Video des 3-D-Modells unter:
www.uni-saarland.de/pressefotos

Fragen beantwortet:

Prof. Dr. Frank Mücklich
Lehrstuhl für Funktionswerkstoffe der Universität des Saarlandes
Steinbeis-Forschungszentrum Material Engineering Center Saarland (MECS)
Tel. 0681/302-70500
Mail: muecke@matsci.uni-sb.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681/302-3610).

Weitere Informationen:

http://www.uni-saarland.de/fuwe
http://www.mec-s.de
http://www.materialwissenschaft.uni-saarland.de
http://www.doerrenberg.de/studienaward.html
http://www.uni-saarland.de/pressefotos

Friederike Meyer zu Tittingdorf | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ursache für eine erbliche Muskelerkrankung entdeckt

22.02.2017 | Medizin Gesundheit

Möglicher Zell-Therapieansatz gegen Zytomegalie

22.02.2017 | Biowissenschaften Chemie

Meeresforschung in Echtzeit verfolgen

22.02.2017 | Geowissenschaften