Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Spur des Knochenminerals

15.11.2010
Calciumphosphat ist im Skelett eines der wertvollsten Mate­rialien: Als Hauptbestandteil von Zähnen und Knochen sorgt es für Härte und Stabilität.

Bei Arteriosklerose jedoch ist die Ablagerung der kristallinen ionischen Verbindung aus Kalk, Phosphor und Sauerstoff ein ebenso gewichtiger wie verhängnisvoller Faktor.

Wissenschaftlich ist noch nicht vollständig geklärt, wie sich dieses Mineral im Körper bildet. Beobachtungen dazu gelangen einer niederländisch-deutschen Forschergruppe in einem Modellsystem, das eine Körperflüssigkeit simuliert.

An den Arbeiten war Dr. Julia Will, Lehrstuhl für Werkstoffwissenschaften (Glas und Keramik) der Friedrich-Alexander-Universität Erlangen-Nürnberg beteiligt. Das Fachmagazin Nature Materials stellte das Ergebnis am 14. November 2010 als Advance online publication auf seiner Website vor1).

Bereits zuvor wurde davon ausgegangen, dass Calciumphosphat zunächst eine Vorstufe durchläuft, gekennzeichnet durch eine ungeordnete Struktur, die der Mineralisierung vorangeht (amorphes Calciumphosphat, ACP). Das in Nature Materials veröffentlichte Paper visualisiert zum ersten Mal die Bildung von Calciumphosphat aus einem Serum. Ein Monolayer — eine Schicht von der Dicke eines einzigen Moleküls — fungierte dabei als Andockstelle für die Kristallisation.

Sichtbar wurde der Prozess durch den Einsatz eines höchstauflösenden Mikroskops für die direkte Abbildung von Objekten mittels Elektronenstrahlen (Transmissionselektronenmikroskopie, TEM). Zu diesem Zweck wurden die Proben in verschiedenen Stadien einer Cryo-Fixierung unterzogen, d. h. in flüssigem Ethan schockgefroren (Cryo TEM).

Die Mineralisation von Calciumphophat im Modell der simulierten Körperflüssigkeit verlief über mehrere Stufen. Aus Ionen im Serum bildeten sich erst Cluster, frei bewegliche Ansammlungen im Nanomass­stab. Danach entstand ACP, das sich in immer stärkerer Dichte am Monolayer anlagerte. Schließlich waren orientierte, im typischen Gitter ausgerichtete Apatit-Kristalle festzustellen, die Endphase des Calciumphophat-Minerals.

Der Arbeitsgruppe gehörten Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Eindhoven (Niederlande) und der Friedrich-Schiller-Universität Jena an. Die Arbeit entstand innerhalb des umfangreichen EU-Verbundprojektes „TEM-Plant“ unter der Projektkoordinatorin Dr. Anna Tampieri, Istituto di scienza e tecnologia dei materiali ceramici (ISTEC), Italien (NMP4-CT-2006-033277).

1) Nature Materials, 14. 10. 2010: Nico A. J. M. Sommerdijk et al., Cryo-TEM yields a comprehensive model for the surface induced crystallization of calcium phosphate, http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat2900.html

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel „familiengerechte Hochschule“.

Weitere Informationen für die Medien:

Dr. Julia Will
Tel.: 09131/85-25510
julia.will@uni-erlangen.de

Pascale Anja Dannenberg | idw
Weitere Informationen:
http://uni-erlangen.de
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat2900.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops