Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinnenseide: Rasante Fadenbildung

16.12.2014

Viele Materialforscher sind begeistert von Spinnenfäden: Dieses Naturprodukt ist so leicht und gleichzeitig derart reißfest und dehnbar wie kein anderes Material. Würzburger Forscher haben jetzt ein weiteres Geheimnis seiner Entstehung gelüftet.

Neuartige Textilfasern, innovative Materialien für den Fahrzeugbau oder für die Medizintechnik: Könnte der Mensch Spinnenfäden von derselben Qualität produzieren wie die achtbeinigen Krabbeltiere, würde das viele Anwendungsmöglichkeiten eröffnen. Rein technisch funktioniert die Herstellung von Spinnenseide zwar schon ziemlich gut, aber die herausragenden mechanischen Eigenschaften des natürlichen Vorbilds werden damit bisher noch nicht erreicht.

„Das liegt vor allem daran, dass wir den biochemischen Mechanismus, über den die Fäden in der Spinne entstehen, immer noch nicht genau verstehen“, sagt Hannes Neuweiler vom Biozentrum der Universität Würzburg. Wenn man diesen Mechanismus vereinfacht beschreibt, klingt die Sache unkompliziert: Im Körper der Tiere verbinden sich viele einzelne Proteine (Spidroine) zu langen Ketten, die wiederum chemisch miteinander „verklebt“ werden – fertig ist der Seidenfaden.

Rasante Vorgänge sind zu analysieren

Der Prozess der Kettenbildung läuft in der Spinne allerdings rasend schnell ab: Beim Abseilen zum Beispiel ziehen die Tiere die Seidenfäden mit einer Geschwindigkeit von bis zu einem Meter pro Sekunde aus ihrem Körper heraus. Genau darin liegt eine Herausforderung für die Wissenschaft: Es ist nicht einfach, diesen rasanten Vorgang auf Ebene der Moleküle genau zu analysieren.

Dank einer ausgefeilten Mikroskopie-Technik haben Hannes Neuweiler, Julia Ries und Simone Schwarze jetzt neue Einblicke in die Bildung von Spinnenfäden gewonnen. Die Würzburger Biotechnologen betrachteten an den einzelnen Proteinen einen speziellen Abschnitt, das so genannte amino-terminale Ende. Dieser Bereich ist eine strukturierte Domäne, deren Form sich verändert, sobald sich die Spidroine zu langen Ketten verbinden.

Proteinbewegung in hoher Auflösung sichtbar

Dem Forschungsteam ist es gelungen, die ultraschnelle Dynamik dieses Proteinabschnitts mit hoher Auflösung sichtbar zu machen. Dabei zeigte sich: Der Abschnitt verändert seine Gestalt extrem schnell, in Bruchteilen einer tausendstel Sekunde – und zwar schon dann, wenn die Proteine noch einzeln vorliegen. Bisher war die Wissenschaft der Meinung, dass diese Gestaltänderung erst später abläuft, direkt beim Prozess der Kettenbildung.

Das Ergebnis haben die Würzburger Forscher im „Journal of the American Chemical Society“ veröffentlicht. „Die Resultate stehen im Einklang mit einem Paradigmenwechsel im grundlegenden Verständnis von Proteinwechselwirkungen, der zurzeit jedoch kontrovers diskutiert wird“, sagt Neuweiler. Demzufolge ist in der Sequenz eines Proteins nicht nur der Code für seine Struktur, sondern auch der für die Form des Bindungspartners hinterlegt.

Ausweitung der Analysen

Im Würzburger Labor werden die Untersuchungen jetzt auf Proteindomänen von anderen Spinnenarten und Spinndrüsen ausgeweitet. Ziel ist es herauszufinden, ob die ultraschnelle Dynamik in der Evolution von Spinnenseidenproteinen unverändert auftritt oder ob sie sich den Funktionseigenschaften des jeweiligen Seidenfadens anpasst.

Microsecond Folding and Domain Motions of a Spider Silk Protein Structural Switch, Julia Ries, Simone Schwarze, Christopher M. Johnson, and Hannes Neuweiler, Journal of the American Chemical Society, online publiziert am 10. November 2014, DOI: 10.1021/ja508760a

Kontakt

Dr. Hannes Neuweiler, Lehrstuhl für Biotechnologie und Biophysik, Biozentrum der Universität Würzburg, T (0931) 31-83872, hannes.neuweiler@uni-wuerzburg.de

Weitere Informationen:

http://www.super-resolution.biozentrum.uni-wuerzburg.de/mitarbeiter_members/hann...

Gunnar Bartsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften