Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinnenseide für Brustimplantate: Neue Beschichtung senkt das Risiko medizinischer Komplikationen

28.01.2014
Brustimplantate aus Silikon kommen seit vielen Jahren in der Chirurgie zum Einsatz. Doch obwohl Silikon für derartige medizinische Anwendungen hervorragend geeignet ist, kommt es in der Folge nicht selten zu Komplikationen.

Einer Forschergruppe um Prof. Dr. Thomas Scheibel an der Universität Bayreuth ist es jetzt gelungen, die Brustimplantate mit einer dünnen Haut aus biotechnologisch hergestellten Spinnenseidenproteinen zu überziehen.


Die Grafik veranschaulicht die Unterschiede zwischen einem unbeschichteten und einem mit Spinnenseidenproteinen beschichteten Implantat.

Grafik: Lehrstuhl Biomaterialien, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Dadurch können, wie die erfolgreich abgeschlossenen vorklinischen Tests zeigen, schmerzhafte Folgewirkungen erheblich verringert oder ganz vermieden werden. Im Fachjournal „Advanced Functional Materials“ stellen die Wissenschaftler ihre Ergebnisse vor.

Implantate, deren Außenhülle aus Silikon besteht, dienen in vielen Fällen der plastischen Wiederherstellung einer Brust, die aufgrund einer Krebserkrankung amputiert wurde. Zudem sind sie unentbehrlich für Brustoperationen, die ohne vorherige Erkrankungen allein aus ästhetischen Gründen vorgenommen werden.

Wenn nun das Silikon mit einer Haut aus Spinnenseidenproteinen überzogen wird, die nicht dicker als 1 bis 5 Tausendstel Millimeter ist, werden die Funktion und die chirurgische Handhabbarkeit des Implantats dadurch in keiner Weise beeinträchtigt. Zugleich toleriert das körpereigene Gewebe die Oberfläche des Implantats viel besser als eine nicht beschichtete Silikonoberfläche, so dass sich das Risiko medizinischer Komplikationen erheblich verringert.

Zu diesen Komplikationen, die nicht selten in den ersten Monaten nach dem Einsatz unbeschichteter Silikonbrustimplantate auftreten, gehört insbesondere eine schmerzhafte Kapselfibrose. Dabei bildet sich um das Implantat eine Kapsel aus körpereigenem Narbengewebe, die häufig verhärtet und sich zusammenzieht. Oftmals muss sie operativ entfernt werden.

Bei diesem Eingriff muss das Implantat ausgewechselt werden. In den vorklinischen Tests mit den beschichteten Implantaten stellte sich heraus, dass die Seidenproteine die Neubildung von körpereigenem Binde- und Narbengewebe signifikant verringern. Die Kapsel, die um das Implantat herum entsteht, ist daher weniger stark und neigt auch weniger zu Verhärtungen. Darüber hinaus kommt es infolge der Seidenbeschichtung in erheblich weniger Fällen zu Entzündungsreaktionen oder zu Abstoßungsreaktionen des Immunsystems.

Die Grundlagen für die Herstellung der Spinnenseidenproteine sowie die Beschichtungstechnologie wurden unter der Leitung von Prof. Dr. Thomas Scheibel am Lehrstuhl für Biomaterialien der Universität Bayreuth entwickelt. Den Rahmen für diese Forschungsarbeiten bildeten ein Projekt des DFG-Sonderforschungsbereichs 840 „Von partikulären Nanosystemen zur Mesotechnologie“ an der Universität Bayreuth sowie ein vom Universitätsklinikum Würzburg gefördertes Vorhaben.

Bei den Spinnenseidenproteinen, welche die Verträglichkeit der Brustimplantate erheblich verbessern, handelt es sich um eADF4(C16)-Moleküle, die von der Biotech-Firma AMSilk GmbH in Martinsried mittlerweile im Industriemaßstab produziert werden. AMSilk hat auch die Implantate beschichtet und dabei die hierfür in Bayreuth entwickelte Technologie umgesetzt. Bei ihren vorklinischen Studien haben die Bayreuther Biomaterialforscher eng mit Medizinern am Universitätsklinikum Leipzig sowie wiederum mit Wissenschaftlern der AMSilk GmbH zusammengearbeitet.

„Spinnenseide mit ihren außergewöhnlichen mechanischen Eigenschaften fasziniert Forscher seit vielen Jahrzehnten“, erklärt Prof. Scheibel. „Bereits in der Antike wurden positive wundheilungsfördernde Effekte beschrieben. Mit unserer neuen Studie ist es gelungen, das Potenzial biotechnologisch hergestellter Spinnenseidenproteine beispielhaft an einer Beschichtung für Silikonbrustimplantate zu zeigen. Die Ergebnisse ermutigen uns, weitere medizintechnische Anwendungen zu verfolgen.“

Zur Person:

Prof. Dr. Thomas Scheibel leitet seit 2007 den Lehrstuhl Biomaterialien an der ingenieurwissenschaftlichen Fakultät der Universität Bayreuth. Er gehört dem Editorial Board verschiedener Zeitschriften an und ist Sprecher des Fachausschusses „Bioinspirierte Materialien und Bionik“ der Deutschen Gesellschaft für Materialkunde (DGM). Prof. Scheibel wurde u.a. mit dem Karl-Heinz-Beckurts-Preis (2008) und der Heinz Maier-Leibnitz-Medaille (2007) ausgezeichnet; 2007 war er Sieger im bundesweiten Ideenwettbewerb "Bionik – Innovation aus der Natur" des Bundesministeriums für Bildung und Forschung (BMBF). 2013 erhielt er den DECHEMA-Preis der Max-Buchner-Stiftung.

Veröffentlichung:

Philip H. Zeplin, Nathalie C. Maksimovikj, Martin C. Jordan, Joachim Nickel, Gregor Lang, Axel H. Leimer, Lin Römer, Thomas Scheibel,
Spider Silk Coatings as a Bioshield to Reduce Periprosthetic Fibrous Capsule Formation,
In: Advanced Functional Materials; Article first published online: 13 Jan 2014
DOI: 10.1002/adfm.201302813
Die Publikation ist frei verfügbar (open access).
Abstract: http://onlinelibrary.wiley.com/doi/10.1002/adfm.201302813/abstract
Kontaktadresse für weitere Informationen:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
Fakultät für Ingenieurwissenschaften
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7361
E-Mail: thomas.scheibel@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/presse/images/2014/013/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops