Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinnen wie die Spinne: Biotech-Spinnenseide gleicht dem natürlichen Vorbild

23.02.2015

Ein Forschungsteam der Universität Bayreuth hat den Prozess der Seidenherstellung in der Spinne erstmals entschlüsselt und auch im Detail erfolgreich nachgeahmt. Die auf diese Weise hergestellte biomimetische Spinnenseide zeigt die gleiche Belastbarkeit wie natürliche Spinnenseide.

Spinnenseide ist ein technologisch hochinteressantes Material, weil sie Festigkeit und Elastizität in einzigartiger Weise verbindet. Sie ist daher stärker belastbar als alle anderen in der Natur vorkommenden oder vom Menschen produzierten Fasern.


Spinnennetz aus biotechnologisch hergestellten Spinnenseidenproteinen.

Foto: Gregor Lang, Universität Bayreuth; zur Veröffentlichung frei.

Einem Forschungsteam an der Universität Bayreuth um Prof. Dr. Thomas Scheibel ist es jetzt erstmals gelungen, den Prozess der Seidenherstellung in der Spinne vollständig zu entschlüsseln und dabei die Gründe aufzuklären, weshalb Spinnenseide so außerordentlich belastbar ist.

Aufbauend auf diesen Einsichten in das ‚Know-how‘ der Spinne haben die Wissenschaftler aus biotechnologisch hergestellten Spinnenseidenproteinen Fasern entwickelt, die genauso belastbar sind wie das natürliche Vorbild. In der Online-Ausgabe der Zeitschrift „Advanced Materials“ stellen sie ihre Forschungsergebnisse vor.

Biomimetik in den Bayreuther Laboratorien

Dem Forschungsteam am Lehrstuhl für Biomaterialien der Universität Bayreuth ist es gelungen, die in der Spinne ablaufenden Prozesse nicht nur zu entschlüsseln, sondern auch in fast allen Schritten nachzuahmen. „Das Ergebnis hat uns selbst überrascht“, berichtet Prof. Scheibel. „Denn die auf diesem Weg hergestellte biomimetische Seide besitzt tatsächlich eine mechanische Belastbarkeit wie natürliche Spinnenseide. Damit stehen die Türen jetzt weit offen für das Erkunden von Anwendungsmöglichkeiten, wie etwa in der Textilindustrie oder der Medizintechnik.“

Grundstrukturen der Spinnenseidenproteine

Jede Faser aus Spinnenseide enthält Millionen von Proteinen, die auf einzigartige Weise miteinander vernetzt sind. Jedes Protein besteht dabei aus drei Teilen, aus sogenannten Domänen: Eine lange Kette von kurzen, sich hundertfach wiederholenden Aminosäuresequenzen bildet die große Kerndomäne. An ihrem einen Ende befindet sich eine Molekülgruppe, die eine freie Aminogruppe enthält und deshalb „N-terminale Domäne“ heißt; am anderen Ende der Kette hängt eine Molekülgruppe, die wegen ihrer Carboxy-Gruppe (COOH) als „C-terminale Domäne“ bezeichnet wird.

„Die herausragenden Eigenschaften der Spinnenseide resultieren aus dem Zusammenspiel dieser drei Proteindomänen“, erläutert Prof. Scheibel. „Dabei hängen die Festigkeit, Elastizität und weitere mechanische Eigenschaften einer Seidenfaser entscheidend davon ab, aus welchen Aminosäuren sich die Kerndomäne zusammensetzt. In dieser Hinsicht gibt es große Unterschiede von Seidenart zu Seidenart und von Spinne zu Spinne.

Die C- und die N-terminale Domäne sind hingegen bei allen Spinnen annähernd gleich. Sie übernehmen wichtige Steuerungsfunktionen, wenn es darum geht, die einzelnen Spinnenseidenmoleküle in eine reißfeste Seidenfaser zu verarbeiten. Die Bedeutung dieser beiden Steuerdomänen ist in früheren Forschungsarbeiten häufig unterschätzt worden.“

Von der kugelförmigen Mizelle bis zur fertigen Seidenfaser

Um Spinnenseidenfasern zu erhalten, die sich durch mechanische Eigenschaften wie in der Natur auszeichnen, muss sich der Herstellungs- und Verarbeitungsprozess weitgehend an der Spinne orientieren. In der Spinne finden sich die einzelnen, im Drüsengewebe entstandenen Proteine im Spinndrüsensack zusammen. Hier bilden sie – wie die Bayreuther Wissenschaftler herausgefunden haben – kugelförmige Strukturen (Mizellen), die Eigenschaften von Flüssigkristallen aufweisen. Die Kerndomänen der Seidenproteine sind im Inneren der Mizelle platziert, ihre Enddomänen befinden sich hingegen an der Mizellenoberfläche. Dabei sind die C-terminalen Domänen paarweise verknüpft, während die N-terminalen Domänen lose Enden bilden.

„Diese kugelförmige Anordnung der Seidenprotein-Paare ist eine extrem stabile Speicherform, die eine ungewollte Faserbildung komplett unterdrückt“, erklärt Prof. Scheibel. „Sie hat zugleich den Vorteil, dass sie die Seidenproteine so vororientiert, dass sie für eine rasche Faserproduktion zur Verfügung stehen.“ Denn sobald die Spinne eine Faser benötigt, drückt sie die Spinnlösung aus dem Drüsensack in den Spinnkanal. Hier werden störende Wassermoleküle, die sich noch an den Oberflächen der Seidenproteine befinden, entfernt.

Zugleich sinkt der pH-Wert, so dass die bisher losen N-terminalen Domänen der Seidenprotein-Paare ihre Struktur schalterartig ändern und sich mit anderen N-terminalen Domänen verklammern. Durch die im Spinnkanal vorherrschenden Scherverhältnisse erhalten die vernetzten Seidenproteine ihre endgültige Ausrichtung als Fasern. Die Spinne kann die Fasern dann aus dem Spinnkanal herausziehen, indem sie beispielsweise ihre Hinterbeine zuhilfe nimmt.

Forschungsförderung

Die in „Advanced Materials“ veröffentlichten Forschungsarbeiten wurden von der Deutschen Forschungsgemeinschaft, insbesondere im Rahmen des an der Universität Bayreuth angesiedelten Sonderforschungsbereichs „From particulate nanosystems to mesotechnology“, sowie von der Technologie AllianzOberfranken (TAO) gefördert. TAO ist ein Verbund der Universitäten Bayreuth und Bamberg sowie der Hochschulen für angewandte Wissenschaften Coburg und Hof. Die Partner kooperieren in den Bereichen „Energie“, „Mobilität“ und „Gesundheit“, die durch die Querschnittsthemen „Mensch und Technik“, „Werkstoffe“ und „IT/Sensorik“ miteinander verbunden sind.

Veröffentlichung

Aniela Heidebrecht, Lukas Eisoldt, Johannes Diehl, Andreas Schmidt, Martha Geffers, Gregor Lang, and Thomas Scheibel, Biomimetic Fibers Made of Rekombinant Spidrions with the same Toughness as Natural Spider Silk.
in: Advanced Materials (2015), DOI: 10.1002/adma.201404234

Kontakt:

Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Weitere Informationen:

http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2015/031-Biotech-Spinnenseide.pdf - Pressemitteilung als pdf mit Abbildungen

Christian Wißler | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Flammschutzmittel – Verborgene Lebensretter in Kunststoffen
20.07.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wie man Stickstoff zwingt, sich zu binden
20.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie