Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinnen wie die Spinne: Biotech-Spinnenseide gleicht dem natürlichen Vorbild

23.02.2015

Ein Forschungsteam der Universität Bayreuth hat den Prozess der Seidenherstellung in der Spinne erstmals entschlüsselt und auch im Detail erfolgreich nachgeahmt. Die auf diese Weise hergestellte biomimetische Spinnenseide zeigt die gleiche Belastbarkeit wie natürliche Spinnenseide.

Spinnenseide ist ein technologisch hochinteressantes Material, weil sie Festigkeit und Elastizität in einzigartiger Weise verbindet. Sie ist daher stärker belastbar als alle anderen in der Natur vorkommenden oder vom Menschen produzierten Fasern.


Spinnennetz aus biotechnologisch hergestellten Spinnenseidenproteinen.

Foto: Gregor Lang, Universität Bayreuth; zur Veröffentlichung frei.

Einem Forschungsteam an der Universität Bayreuth um Prof. Dr. Thomas Scheibel ist es jetzt erstmals gelungen, den Prozess der Seidenherstellung in der Spinne vollständig zu entschlüsseln und dabei die Gründe aufzuklären, weshalb Spinnenseide so außerordentlich belastbar ist.

Aufbauend auf diesen Einsichten in das ‚Know-how‘ der Spinne haben die Wissenschaftler aus biotechnologisch hergestellten Spinnenseidenproteinen Fasern entwickelt, die genauso belastbar sind wie das natürliche Vorbild. In der Online-Ausgabe der Zeitschrift „Advanced Materials“ stellen sie ihre Forschungsergebnisse vor.

Biomimetik in den Bayreuther Laboratorien

Dem Forschungsteam am Lehrstuhl für Biomaterialien der Universität Bayreuth ist es gelungen, die in der Spinne ablaufenden Prozesse nicht nur zu entschlüsseln, sondern auch in fast allen Schritten nachzuahmen. „Das Ergebnis hat uns selbst überrascht“, berichtet Prof. Scheibel. „Denn die auf diesem Weg hergestellte biomimetische Seide besitzt tatsächlich eine mechanische Belastbarkeit wie natürliche Spinnenseide. Damit stehen die Türen jetzt weit offen für das Erkunden von Anwendungsmöglichkeiten, wie etwa in der Textilindustrie oder der Medizintechnik.“

Grundstrukturen der Spinnenseidenproteine

Jede Faser aus Spinnenseide enthält Millionen von Proteinen, die auf einzigartige Weise miteinander vernetzt sind. Jedes Protein besteht dabei aus drei Teilen, aus sogenannten Domänen: Eine lange Kette von kurzen, sich hundertfach wiederholenden Aminosäuresequenzen bildet die große Kerndomäne. An ihrem einen Ende befindet sich eine Molekülgruppe, die eine freie Aminogruppe enthält und deshalb „N-terminale Domäne“ heißt; am anderen Ende der Kette hängt eine Molekülgruppe, die wegen ihrer Carboxy-Gruppe (COOH) als „C-terminale Domäne“ bezeichnet wird.

„Die herausragenden Eigenschaften der Spinnenseide resultieren aus dem Zusammenspiel dieser drei Proteindomänen“, erläutert Prof. Scheibel. „Dabei hängen die Festigkeit, Elastizität und weitere mechanische Eigenschaften einer Seidenfaser entscheidend davon ab, aus welchen Aminosäuren sich die Kerndomäne zusammensetzt. In dieser Hinsicht gibt es große Unterschiede von Seidenart zu Seidenart und von Spinne zu Spinne.

Die C- und die N-terminale Domäne sind hingegen bei allen Spinnen annähernd gleich. Sie übernehmen wichtige Steuerungsfunktionen, wenn es darum geht, die einzelnen Spinnenseidenmoleküle in eine reißfeste Seidenfaser zu verarbeiten. Die Bedeutung dieser beiden Steuerdomänen ist in früheren Forschungsarbeiten häufig unterschätzt worden.“

Von der kugelförmigen Mizelle bis zur fertigen Seidenfaser

Um Spinnenseidenfasern zu erhalten, die sich durch mechanische Eigenschaften wie in der Natur auszeichnen, muss sich der Herstellungs- und Verarbeitungsprozess weitgehend an der Spinne orientieren. In der Spinne finden sich die einzelnen, im Drüsengewebe entstandenen Proteine im Spinndrüsensack zusammen. Hier bilden sie – wie die Bayreuther Wissenschaftler herausgefunden haben – kugelförmige Strukturen (Mizellen), die Eigenschaften von Flüssigkristallen aufweisen. Die Kerndomänen der Seidenproteine sind im Inneren der Mizelle platziert, ihre Enddomänen befinden sich hingegen an der Mizellenoberfläche. Dabei sind die C-terminalen Domänen paarweise verknüpft, während die N-terminalen Domänen lose Enden bilden.

„Diese kugelförmige Anordnung der Seidenprotein-Paare ist eine extrem stabile Speicherform, die eine ungewollte Faserbildung komplett unterdrückt“, erklärt Prof. Scheibel. „Sie hat zugleich den Vorteil, dass sie die Seidenproteine so vororientiert, dass sie für eine rasche Faserproduktion zur Verfügung stehen.“ Denn sobald die Spinne eine Faser benötigt, drückt sie die Spinnlösung aus dem Drüsensack in den Spinnkanal. Hier werden störende Wassermoleküle, die sich noch an den Oberflächen der Seidenproteine befinden, entfernt.

Zugleich sinkt der pH-Wert, so dass die bisher losen N-terminalen Domänen der Seidenprotein-Paare ihre Struktur schalterartig ändern und sich mit anderen N-terminalen Domänen verklammern. Durch die im Spinnkanal vorherrschenden Scherverhältnisse erhalten die vernetzten Seidenproteine ihre endgültige Ausrichtung als Fasern. Die Spinne kann die Fasern dann aus dem Spinnkanal herausziehen, indem sie beispielsweise ihre Hinterbeine zuhilfe nimmt.

Forschungsförderung

Die in „Advanced Materials“ veröffentlichten Forschungsarbeiten wurden von der Deutschen Forschungsgemeinschaft, insbesondere im Rahmen des an der Universität Bayreuth angesiedelten Sonderforschungsbereichs „From particulate nanosystems to mesotechnology“, sowie von der Technologie AllianzOberfranken (TAO) gefördert. TAO ist ein Verbund der Universitäten Bayreuth und Bamberg sowie der Hochschulen für angewandte Wissenschaften Coburg und Hof. Die Partner kooperieren in den Bereichen „Energie“, „Mobilität“ und „Gesundheit“, die durch die Querschnittsthemen „Mensch und Technik“, „Werkstoffe“ und „IT/Sensorik“ miteinander verbunden sind.

Veröffentlichung

Aniela Heidebrecht, Lukas Eisoldt, Johannes Diehl, Andreas Schmidt, Martha Geffers, Gregor Lang, and Thomas Scheibel, Biomimetic Fibers Made of Rekombinant Spidrions with the same Toughness as Natural Spider Silk.
in: Advanced Materials (2015), DOI: 10.1002/adma.201404234

Kontakt:

Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Weitere Informationen:

http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2015/031-Biotech-Spinnenseide.pdf - Pressemitteilung als pdf mit Abbildungen

Christian Wißler | Universität Bayreuth

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten