Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannung in der Nanowelt - Infrarot-Mikroskopie macht nanoskalige Verspannungen sichtbar

12.01.2009
Wissenschaftler des baskischen Forschungsinstitutes CIC nanoGUNE in San Sebastian haben in einer Kooperation mit den Münchner Max-Planck-Instituten für Biochemie und Plasmaphysik eine neue störungsfreie Methode entwickelt, um nanoskopische Verspannungen in Halbleitermateralien nachzuweisen.

Die auf der Infrarot-Nahfeldmikroskopie basierende Methode bietet neue Möglichkeiten zur Untersuchung der mechanischen Eigenschaften von Hochleistungskeramiken oder zur Messung der lokalen Leitfähigkeit in nanoskaligen Bauelementen modernster Computer Chips. (Nature Nanotechnology, advanced online publication, 11 Jan. 2009).


Beobachtung der Entstehung von Nanorissen mit einem Infrarot-Nahfeldmikroskop: a) Relief von dreieckigen Eindrücken auf der Oberfläche eines Siliziumcarbid - Kristalls, welche mit Hilfe einer scharfen Diamant - Spitze erzeugt wurden. Mit zunehmender Kraft werden die Eindrücke tiefer und größer. b) Infrarotbilder bei einer Wellenlänge von 10 Mikrometer zeigen deutlich die Spannungsfelder um die Eindrücke. Bereiche in denen der Kristall komprimiert wurde erscheinen hell, gedehnte Regionen dunkel. Aufgrund der außergewöhnlich hohen Auflösung lässt sich auch die Entstehung von Nanorissen erkennen (blau gestrichelter Kreis). Abbildung: Andreas Huber, Max-Planck-Institut für Biochemie, Martinsried

Die Charakterisierung von Materialverspannungen im Nanometerbereich (unter 100 Nanometer) ist eine wesentliche Anforderung an die moderne Messtechnik, da Verspannungen sowohl die mechanischen Eigenschaften von Hochleistungskeramiken, als auch die elektronischen Eigenschaften moderner Halbleiterbauelemente bestimmen. Eine störungs- und kontaktfreie Abbildung von Verspannungen und deren Auswirkungen auf die lokale Leitfähigkeit ist noch immer eine der großen Herausforderungen in der Nano- und Halbleitertechnologie.

Die Infrarot-Nanoskopie, die von Forschern am Max-Planck-Institut für Biochemie in Martinsried bei München entwickelt wurde, bietet eine Möglichkeit für hochempfindliche Materialcharakterisierung. Sie basiert auf einem Raster-Kraft-Mikroskop (Atomic Force Microscope, AFM), dessen feine Abtastspitze mit nur 20-40 nm Durchmesser die Streuung von optischen Nahfeldern registriert (scattering-type Scanning Near-field Optical Microscopy, s-SNOM). Über das gestreute Licht lassen sich, zusätzlich zur Topographie, Informationen über die lokalen optischen und chemischen Eigenschaften von Materialien gewinnen. Die Nanowissenschaftler konnten in den letzten Jahren ihre Nahfeldtechnik auch auf den Infrarot- und Terahertz-Bereich ausdehnen und damit ein Auflösungsvermögen von 20 Nanometer erzielen.

In der neuesten Studie zeigen die Wissenschaftler, dass die Infrarot-Nahfeldmikroskopie auch in der Lage ist, kleinste Spannungsfelder und Nanorisse in Kristallen zu entdecken. In einem Demonstrationsexperiment erzeugten die Wissenschaftler mit Hilfe einer Diamant-Spitze verschieden starke Eindrücke auf der Oberfläche eines Siliziumcarbid-Kristalls. Mit ihrem Nahfeldmikroskop verfolgten sie die Entwicklung der nanoskopischen Spannungsfelder, die durch den Eindruck erzeugt wurden. Die aufgezeichneten Infrarotbilder visualisieren erstmals auch die Entstehung und Entwicklung von Nanorissen mit Hilfe einer optischen Methode. "Gegenüber anderen Mikroskopie-Verfahren, wie etwa Elektronenmikroskopie, hat unsere Methode den Vorteil, dass keine spezielle Probenpräparation notwendig ist. Modifikationen des ursprünglichen Probenzustandes durch eine Präparation werden somit vermieden", kommentiert Andreas Huber, der die Experimente im Rahmen seiner Doktorarbeit durchführte. "Das Verfahren kann in Zukunft dazu angewendet werden, um etwa Nanorisse in Keramiken oder mikroelektronisch-mechanischen Systemen (MEMS) aufzuspüren, bevor sie zu Materialversagen führen", meint Alexander Ziegler.

Weiterhin zeigen die Wissenschaftler, dass die Infrarot-Nahfeldmikroskopie das Potential besitzt, gleichzeitig die Ladungsträger-Konzentration und -Mobilität in nanoskalig verspannten Halbleitern zu untersuchen. Lokale Spannungsfelder werden in modernen Halbleiterstrukturen verwendet, um gezielt die Leitfähigkeit zu erhöhen und dadurch elektronische Bauelemente etwa in Computer-Chips weiter zu verkleinern. "Unsere Ergebnisse versprechen eine kontaktfreie und quantitative Abbildung der Ladungsträgereigenschaften. Deshalb ergeben sich für die Infrarot-Nahfeldmikroskopie interessante Anwendungsmöglichkeiten zur nano-skopischen Charakterisierung von zukünftigen elektronischen Bauelementen, bei denen lokal verspanntes Silizium ein wesentlicher Bestandteil ist", so Rainer Hillenbrand, Leiter der Forschungsgruppe Nano-Photonics am Max-Planck-Institut für Biochemie, der jetzt die Leitung des Nanooptics Laboratory bei nanoGUNE in San Sebastian (Spanien) übernommen hat.

Original publication:
A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, Infrared nanoscopy of strained semiconductors, Nat. Nanotech., advanced online publication, 11. Jan. 2009, DOI 10.1038/NNANO.2008.399.
Contact:
Dr. Rainer Hillenbrand
Nanooptics Laboratory
CIC nanoGUNE Consolider
20009 Donostia - San Sebastian, Spain
phone +34 943 574 007
r.hillenbrand@nanogune.eu
and
Nano-Photonics Group
Max-Planck-Institut für Biochemie
82152 Martinsried, Germany

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de/hillenbrand
http://www.nanogune.eu
http://www.biochem.mpg.de/news/pressroom/Nanophotonics.pdf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics