Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannung in der Nanowelt - Infrarot-Mikroskopie macht nanoskalige Verspannungen sichtbar

12.01.2009
Wissenschaftler des baskischen Forschungsinstitutes CIC nanoGUNE in San Sebastian haben in einer Kooperation mit den Münchner Max-Planck-Instituten für Biochemie und Plasmaphysik eine neue störungsfreie Methode entwickelt, um nanoskopische Verspannungen in Halbleitermateralien nachzuweisen.

Die auf der Infrarot-Nahfeldmikroskopie basierende Methode bietet neue Möglichkeiten zur Untersuchung der mechanischen Eigenschaften von Hochleistungskeramiken oder zur Messung der lokalen Leitfähigkeit in nanoskaligen Bauelementen modernster Computer Chips. (Nature Nanotechnology, advanced online publication, 11 Jan. 2009).


Beobachtung der Entstehung von Nanorissen mit einem Infrarot-Nahfeldmikroskop: a) Relief von dreieckigen Eindrücken auf der Oberfläche eines Siliziumcarbid - Kristalls, welche mit Hilfe einer scharfen Diamant - Spitze erzeugt wurden. Mit zunehmender Kraft werden die Eindrücke tiefer und größer. b) Infrarotbilder bei einer Wellenlänge von 10 Mikrometer zeigen deutlich die Spannungsfelder um die Eindrücke. Bereiche in denen der Kristall komprimiert wurde erscheinen hell, gedehnte Regionen dunkel. Aufgrund der außergewöhnlich hohen Auflösung lässt sich auch die Entstehung von Nanorissen erkennen (blau gestrichelter Kreis). Abbildung: Andreas Huber, Max-Planck-Institut für Biochemie, Martinsried

Die Charakterisierung von Materialverspannungen im Nanometerbereich (unter 100 Nanometer) ist eine wesentliche Anforderung an die moderne Messtechnik, da Verspannungen sowohl die mechanischen Eigenschaften von Hochleistungskeramiken, als auch die elektronischen Eigenschaften moderner Halbleiterbauelemente bestimmen. Eine störungs- und kontaktfreie Abbildung von Verspannungen und deren Auswirkungen auf die lokale Leitfähigkeit ist noch immer eine der großen Herausforderungen in der Nano- und Halbleitertechnologie.

Die Infrarot-Nanoskopie, die von Forschern am Max-Planck-Institut für Biochemie in Martinsried bei München entwickelt wurde, bietet eine Möglichkeit für hochempfindliche Materialcharakterisierung. Sie basiert auf einem Raster-Kraft-Mikroskop (Atomic Force Microscope, AFM), dessen feine Abtastspitze mit nur 20-40 nm Durchmesser die Streuung von optischen Nahfeldern registriert (scattering-type Scanning Near-field Optical Microscopy, s-SNOM). Über das gestreute Licht lassen sich, zusätzlich zur Topographie, Informationen über die lokalen optischen und chemischen Eigenschaften von Materialien gewinnen. Die Nanowissenschaftler konnten in den letzten Jahren ihre Nahfeldtechnik auch auf den Infrarot- und Terahertz-Bereich ausdehnen und damit ein Auflösungsvermögen von 20 Nanometer erzielen.

In der neuesten Studie zeigen die Wissenschaftler, dass die Infrarot-Nahfeldmikroskopie auch in der Lage ist, kleinste Spannungsfelder und Nanorisse in Kristallen zu entdecken. In einem Demonstrationsexperiment erzeugten die Wissenschaftler mit Hilfe einer Diamant-Spitze verschieden starke Eindrücke auf der Oberfläche eines Siliziumcarbid-Kristalls. Mit ihrem Nahfeldmikroskop verfolgten sie die Entwicklung der nanoskopischen Spannungsfelder, die durch den Eindruck erzeugt wurden. Die aufgezeichneten Infrarotbilder visualisieren erstmals auch die Entstehung und Entwicklung von Nanorissen mit Hilfe einer optischen Methode. "Gegenüber anderen Mikroskopie-Verfahren, wie etwa Elektronenmikroskopie, hat unsere Methode den Vorteil, dass keine spezielle Probenpräparation notwendig ist. Modifikationen des ursprünglichen Probenzustandes durch eine Präparation werden somit vermieden", kommentiert Andreas Huber, der die Experimente im Rahmen seiner Doktorarbeit durchführte. "Das Verfahren kann in Zukunft dazu angewendet werden, um etwa Nanorisse in Keramiken oder mikroelektronisch-mechanischen Systemen (MEMS) aufzuspüren, bevor sie zu Materialversagen führen", meint Alexander Ziegler.

Weiterhin zeigen die Wissenschaftler, dass die Infrarot-Nahfeldmikroskopie das Potential besitzt, gleichzeitig die Ladungsträger-Konzentration und -Mobilität in nanoskalig verspannten Halbleitern zu untersuchen. Lokale Spannungsfelder werden in modernen Halbleiterstrukturen verwendet, um gezielt die Leitfähigkeit zu erhöhen und dadurch elektronische Bauelemente etwa in Computer-Chips weiter zu verkleinern. "Unsere Ergebnisse versprechen eine kontaktfreie und quantitative Abbildung der Ladungsträgereigenschaften. Deshalb ergeben sich für die Infrarot-Nahfeldmikroskopie interessante Anwendungsmöglichkeiten zur nano-skopischen Charakterisierung von zukünftigen elektronischen Bauelementen, bei denen lokal verspanntes Silizium ein wesentlicher Bestandteil ist", so Rainer Hillenbrand, Leiter der Forschungsgruppe Nano-Photonics am Max-Planck-Institut für Biochemie, der jetzt die Leitung des Nanooptics Laboratory bei nanoGUNE in San Sebastian (Spanien) übernommen hat.

Original publication:
A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand, Infrared nanoscopy of strained semiconductors, Nat. Nanotech., advanced online publication, 11. Jan. 2009, DOI 10.1038/NNANO.2008.399.
Contact:
Dr. Rainer Hillenbrand
Nanooptics Laboratory
CIC nanoGUNE Consolider
20009 Donostia - San Sebastian, Spain
phone +34 943 574 007
r.hillenbrand@nanogune.eu
and
Nano-Photonics Group
Max-Planck-Institut für Biochemie
82152 Martinsried, Germany

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de/hillenbrand
http://www.nanogune.eu
http://www.biochem.mpg.de/news/pressroom/Nanophotonics.pdf

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie