Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spannende Oxidkristalle

02.10.2009
Oxidkristalle bieten eine spektakuläre Vielfalt an funktionalen Eigenschaften für elektronische Bauelemente. Wissenschaftler entwickeln immer neue Herstellungsmethoden und können so Material mit maßgeschneiderten Eigenschaften erzeugen.

Ohne Filter würde Margitta Bernhagen nur einen gleißend hellen Fleck sehen. Auch mit Filter sind die Konturen oftmals nur zu erahnen, wenn sie den Keimkristall in die über 2000 Grad Celsius heiße Schmelze taucht.

In dieser entscheidenden Phase der Kristallzüchtung muss sie sich eher auf ihr Gefühl verlassen: die Temperatur der Schmelze muss so hoch sein, dass sie nicht sofort am Keimkristall zu erstarren beginnt, und sie muss niedrig genug sein, damit Keim und Schmelze nicht voneinander abreißen. Erst wenn Keim und Schmelze nur noch durch einen schlanken Schmelzhals verbunden sind, startet sie den Züchtungsprozess. Am Keim, der nun langsam unter Rotation hochgezogen wird, kristallisiert die Schmelze.

Dr. Reinhard Uecker vom Leibniz-Institut für Kristallzüchtung (IKZ) erklärt: "Die Kristallzüchter haben eine große Beobachtungsgabe und sehr viel Feingefühl. Unsere wissenschaftlichen Theorien würden wenig nützen, hätten wir nicht unsere kompetenten Techniker, die das Ganze dann umsetzen."

Das IKZ ist das einzige Institut weltweit, das Seltenerdscandate züchtet (s. Kasten). Die Anordnung der Atome in diesen speziellen Oxidkristallen wird durch die sogenannte Perowskitstruktur beschrieben die in der Natur sehr häufig vorkommt. Der Grundbaustein dieser Struktur, die Elementarzelle, ist aber außergewöhnlich groß. Mit diesen Seltenerdscandaten stehen erstmals hochperfekte Substratkristalle für Perowskitschichten, wie z.B. Barium- und Strontiumtitanat zur Verfügung, die für die Herstellung elektronischer Bauelemente von großer Bedeutung sind.

Wird eine dünne kristalline Schicht auf einem Substrat abgeschieden, so wird diese Schicht umso perfekter, je ähnlicher sich die beiden Kristallstrukturen sind. Im Idealfall bestehen deshalb die Schicht und die Unterlage aus demselben Material. Andererseits ist bekannt, dass bei der Abscheidung einer dünnen kristallinen Schicht auf einem artfremden kristallinen Substrat Verspannungen in ihr entstehen, die, wenn sie ein bestimmtes Maß nicht überschreiten, die Schichteigenschaften verändern, ohne die Schicht zu zerstören.

Diese Art der Eigenschaftsmodifizierung strebte Darrell G. Schlom von der Cornell University (USA) für Barium- und Strontiumtitanatschichten an, als er sich vor einigen Jahren an das IKZ mit der Bitte um Züchtung der Seltenerdscandat-Kristalle wandte. Diese Kristalle sind als Unterlage für Barium- und Strontiumtitanatschichten besonders geeignet, da sie beiden Schichtmaterialien strukturell sehr nahestehen und außerdem auch chemisch und thermisch sehr stabil sind. Die Seltenerdscandat-Kristalle werden aus der Schmelze gezüchtet. Im IKZ wird dafür die sogenannte Czochralski-Methode eingesetzt, das ist die am weitesten verbreitete und am höchsten entwickelte Tiegelmethode zur Züchtung von Volumenkristallen. Beim Entwickeln der Züchtungstechnologie für diese Kristalle ist ihre hohe Schmelztemperatur das größte Problem. Dysprosiumscandat hat dabei mit 2000°C die niedrigste Schmelztemperatur, Praseodymscandat schmilzt bei etwa 2250°C. Dies ist die absolute Belastungsgrenze des Iridium-Schmelztiegels und diese Nähe zur Belastungsgrenze macht die Wahl der richtigen Züchtungsbedingungen zu einer großen Herausforderung. Trotzdem ermöglichte die Kombination von modernster Ausrüstung und langjähriger Erfahrung den Kristallzüchtern des IKZ, Darrell Schlom nach einigen Monaten den ersten Dysprosiumscandat-Kristall zur Verfügung zu stellen. Inzwischen werden sieben verschiedene Seltenerdscandat-Kristalle gezüchtet.

Die Größe ihrer Elementarzellen unterscheidet sich um 0,01-Ångstrom-Stufen (= 1 Pikometer). Je nach Wahl eines dieser Substrate ist die darauf abgeschiedene Schicht unterschiedlich stark verspannt. Damit wird ein Feintuning der Schichteigenschaften möglich. So ist zum Beispiel Strontiumtitanat eigentlich nicht einmal in der Nähe des absoluten Nullpunktes (-273,15°C) ferroelektrisch. Durch die Abscheidung einer Strontiumtitanatschicht auf einem Dysprosiumscandat-Substrat entstanden in der Schicht Verspannungen, die aus diesem Material ein Raumtemperatur-Ferroelektrikum machten. Damit steht ein neues, umweltfreundliches Material für die Herstellung von nichtflüchtigen Speicherbauelementen, den FRAMs, zur Verfügung, das das in der Vergangenheit überwiegend eingesetzte giftige bleihaltige Ferroelektrikum ablösen kann.

Ein ganz anderes Anwendungsbeispiel ist die Herstellung aktiver Oberflächen: Mit Titandioxid beschichtete Wand- und Bodenfliesen reinigen sich unter UV-Bestrahlung selbst, indem Verunreinigungen auf der Oberfläche oxidieren und so zerstört und letztendlich beseitigt werden.

Oxide gewinnen für die Elektronik zunehmend an Bedeutung. Auf dem jungen Gebiet der "Oxidelektronik" startet jetzt ein großes Kooperations-Projekt des IKZ gemeinsam mit der Humboldt Universität (HU) und der University of California, Santa Barbara (UCSB), von dem sich die Wissenschaftler Materialien mit weiteren interessanten Eigenschaften erhoffen. Gefördert wird das Projekt von der DFG und der National Science Foundation (NSF) der USA. Ziel von IKZ und HU ist die Züchtung von halbleitenden Oxidkristallen in hoher Perfektion. Die kalifornischen Wissenschaftler setzen diese dann als arteigene Substratkristalle für hochperfekte Schichten mit neuen Eigenschaften ein. Die Waferherstellung aus den Substratkristallen übernimmt dabei ein langjähriger Kooperationspartner des IKZ, die Berliner Firma CrysTec GmbH. "Mit der UCSB haben wir einen hochkarätigen Partner gewonnen. Wir sind überzeugt, in diesem Projekt die Anwendungsmöglichkeiten von Oxidkristallen voranzubringen", betont Reinhard Uecker.

Seltene Erden
"Seltene Erden" (SE) ist ein Oberbegriff für eine Gruppe von chemischen Elementen. Entgegen ihrem Namen sind die Elemente der Seltenen Erden nicht selten. Zur Zeit ihrer Entdeckung wurden sie jedoch zuerst in seltenen Mineralien gefunden, die Elemente selbst kommen aber recht häufig in der Erdkruste vor. Als "Erden" wurden früher Oxide bezeichnet. Als Seltenerdscandat (SEScO3) bezeichnet man die 1:1-Verbindung zwischen einem Seltenerdoxid (SE2O3) und Scandiumoxid (Sc2O3).
Ziehen nach dem Czochralski-Verfahren
Im Tiegel wird die zu kristallisierende Substanz geschmolzen. Ein kleiner Einkristall der zu züchtenden Substanz, der sogenannte Keim, wird in die Schmelze eingetaucht und langsam unter Rotation nach oben gezogen. Das erstarrende Material setzt das Kristallgitter des Keims fort und wächst so zum Einkristall. Bei den Seltenerdscandaten beträgt die Schmelztemperatur zwischen 2000 und 2400 Grad Celsius.
Kontakt:
Dr. Reinhard Uecker, uecker@ikz-berlin.de
Leibniz-Institut für Kristallzüchtung
Gesine Wiemer, Tel.: 030-6392 3338, wiemer@fv-berlin.de
Forschungsverbund Berlin
Presse und Öffentlichkeitsarbeit

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.ikz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie