Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Smart Cut: Korrosion als Werkzeug für Präzisionsschnitte in Silizium

14.10.2010
Erste Ergebnisse aus dem EU-Forschungsprojekt ADGLASS

Wissenschaftlern des Fraunhofer-Instituts für Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen, des Fraunhofer-Instituts für Werkstoffmechanik IWM, Freiburg, der Universität Bremen, des Karlsruher Instituts für Technologie KIT und des King’s College London ist es erstmals gelungen, mittels einer neu entwickelten Simulationstechnik die molekulardynamischen Grundlagen des wichtigen »Smart Cut« Schneideprozesses zu entschlüsseln: Langsam fortschreitende Spannungsriss-Korrosion führt zur atomar präzisen Kristalltrennung.


Mechanisches Spannungsfeld (Rot: Zugspannung, Blau: Druckspannung) und Details der Korrosionsreaktion an einem Wasserstoff-induzierten Defekt in kristallinem Silizium.

Kristalline Schichten mit einer Dicke von etwa 50 Nanometern können mit atomarer Präzision aus einem Silizium-Wafer getrennt werden, nachdem die Wafer-Oberfläche mit einem Wasserstoffstrahl implantiert und anschließend erhitzt wurde.

Die Halbleiterindustrie verwendet diesen Prozess seit einigen Jahren, um mithilfe der sogenannten »Smart-Cut-Technik« die für elektronische Schaltkreise benötigten Silicon-on-Insulator-Strukturen aufzubauen. Was tatsächlich im Siliziumkristall während des »schlauen Schnittes« passiert, war bis jetzt weitestgehend unbekannt. Deshalb konnten die Hersteller die Smart-Cut-Technik bislang lediglich empirisch mittels »Trial and Error« optimieren.

Nach Bestrahlung einer Siliziumoberfläche mit Wasserstoff bilden sich unterhalb der Oberfläche Defekte in Form scheibenförmiger, nanometergroßer Regionen gespaltener Siliziumbindungen. Beim Erhitzen wachsen diese Defekte weiter, verbinden sich untereinander und durchtrennen schließlich das Silizium. Es wurde bisher vermutet, dass Wasserstoffatome in die Defekte eindringen, Wasserstoffmoleküle bilden und allein aufgrund des Gasdrucks einen Kristallbruch verursachen.

»Wäre der Gasdruck die Ursache für den Kristallbruch, würde er zu gezackten und nicht zu den tatsächlichen extrem glatten Oberflächen führen, die im technologischen Prozess entstehen«, widerlegt Dr. Gianpietro Moras vom Karlsruher Institut für Technologie die Hypothese.

Moras und seine Kollegen haben jetzt mithilfe quantenmechanischer Simulationen herausgefunden, dass die Kristalltrennung durch langsam fortschreitende Spannungsriss-Korrosion erfolgt. Die gebildeten Wasserstoffmoleküle innerhalb der scheibenförmigen Defekte reagieren mit gedehnten Silizium-Silizium-Bindungen an deren Spitzen und bringen die Bindungen zum Bruch. So wachsen die Defekte parallel zur Kristalloberfläche und erzeugen den sehr glatten – in der Tat atomistisch glatten – Riss innerhalb des Materials. Erst wenn der Defekt groß genug wird, bei einem Durchmesser von etwa zehn Mikrometern, baut sich der Druck des einströmenden Wasserstoffs auf und führt zum spröden Kristallbruch.

Während Spannungsriss-Korrosion im Allgemeinen als ein verheerendes Phänomen betrachtet wird, das die Sicherheit und Lebensdauer von mechanischen Infrastrukturen stark beeinflusst, zeigt diese Arbeit hingegen, dass es gezielt für die Herstellung von nanometergroßen Strukturen eingesetzt werden kann. Die Befunde eröffnen neue Möglichkeiten in der Optimierung der Smart-Cut-Technik, welche sich ebenso im Falle anderer kovalenter Materialien wie Germanium, Diamant und Siliziumkarbid bewährt hat.

Nie zuvor wurde Spannungsriss-Korrosion mit quantenmechanischer Präzision in realistisch großen und komplexen Systemen untersucht, wie es dem Wissenschaftlerteam nun gelungen ist. Erst die Entwicklung einer neuen, hybriden quanten-klassischen Simulationstechnik – die zum Teil im Rahmen des von der Europäischen Union geförderten Verbundprojekts ADGLASS stattfand – hat den Durchbruch ermöglicht.

Der Konsortiumkoordinator Prof. Colombi Ciacchi erläutert: »Das detaillierte Verständnis von Prozessen dieser Art hat jedoch nicht nur direkte Auswirkungen in der Smart-Cut-Technik, sondern wird darüber hinaus Ingenieuren und Wissenschaftlern dabei helfen, die Haltbarkeit einer Reihe von Materialien und Strukturen mit hohem Korrosionsrisiko zu verbessern, beispielsweise von laminiertem Glas, bei dem die Spannungen der verschiedenen Schichten das Glas anfällig für Korrosion durch Wasser machen. Darüber hinaus werden Mikro-Elektro-Mechanische Systeme (MEMS) gleichermaßen profitieren, da diese winzigen Maschinen oftmals Kontakt mit korrosiven Substanzen, zum Beispiel biologischen Flüssigkeiten, haben.«

Auch der Verschleiß von aneinander reibenden Bauteilen und Fertigungsprozesse wie die Mikrozerspanung beruhen auf einer Kombination von chemischen Reaktionen und mechanischer Spannung. »Da öffnen unsere Simulationen ganz neue Untersuchungswege«, ergänzt Colombi Ciacchi.

Hintergrundinformation
Das von der Europäischen Kommission geförderte Projekt »Adhesion and Cohesion at Interfaces in High Performance Glassy Systems« (ADGLASS) steht für Angewandte Spitzenforschung der Grenzflächenmodellierung und -funktionalisierung zur Entwicklung von Hochleistungsglasmaterialien für Pharmazie und Solartechnik.

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM koordiniert das Projekt unter der Leitung von Prof. Lucio Colombi Ciacchi, Inhaber der Conrad-Naber-Stiftungsprofessur »Grenzflächen in der Bio-Nano-Werkstofftechnik« im Fachbereich Produktionstechnik und Mitglied des »Bremen Center for Computational Materials Science« der Universität Bremen.

Veröffentlichung
G. Moras, L. Colombi Ciacchi, C. Elsässer, P. Gumbsch, A. De Vita, »Atomically smooth stress-corrosion cleavage of a hydrogen-implanted crystal«, Physical Review Letters 105, 075502 (2010) (Featured in Physical Review Focus, vol. 26, 13th August 2010).
Weitere Informationen:
http://www.ifam.fraunhofer.de
http://www.hmi.uni-bremen.de
http://www.bccms.uni-bremen.de
http://www.iwm.fraunhofer.de
http://www.adglass.eu

Anne-Grete Becker | Fraunhofer-Institut
Weitere Informationen:
http://www.ifam.fraunhofer.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Superelastische Metalle ohne Ermüdung: Kieler Forschende entwickeln neues intelligentes Material
29.05.2015 | Christian-Albrechts-Universität zu Kiel

nachricht Kieler Forschende bauen die kleinsten Maschinen der Welt
22.05.2015 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Galapagos-Vulkanismus: Überraschend explosiv

Internationales Vulkanologen-Team präsentiert neue Erkenntnisse zur Eruptions-Geschichte

Vor 8 bis 16 Millionen Jahren gab es im Gebiet der heutigen Galapagos-Inseln einen hochexplosiven Vulkanismus. Das zeigt erstmals die Auswertung von...

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungen

Cannabis – eine andauernde Kontroverse

29.05.2015 | Veranstaltungen

Frauen können nicht alles haben - Männer aber schon?!

29.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikhael Subotzky und Patrick Waterhouse erhalten den Deutsche Börse Photography Prize 2015

29.05.2015 | Förderungen Preise

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungsnachrichten

HDT - Sommerakademie 2015 für Entwickler und Ingenieure

29.05.2015 | Seminare Workshops