Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sintern mit Elektronenstrahl für gedruckte Elektronik

17.09.2015

Auf der Werkstoffwoche 2015 „Werkstoffwoche für die Zukunft“, vom 14. bis 17.9.2015, stellen Fraunhofer FEP und Fraunhofer IKTS ein neues, lokal selektives Elektronenstrahl-Sinterverfahren zur Herstellung leitfähiger Strukturen auf Polymersubstraten vor.

Eine aktuelle Herausforderung in der gedruckten Elektronik ist die schnelle und preiswerte Herstellung leitfähiger Bahnen auf temperatursensiblen Substraten, wie sie zum Beispiel für flexible Schaltkreise und flexible OLED sowie RFID-Antennen benötigt werden.

Typischerweise werden dazu Silbertinten verdruckt, die Partikelgrößen im Nanometerbereich besitzen. Mit Nanopartikeln ist es möglich, beim nachfolgenden Sintervorgang bereits mit niedrigen Temperaturen von ca. 200 °C eine ausreichend gute elektrische Leitfähigkeit der gedruckten Struktur zu erreichen.

Dies erlaubt die Benutzung üblicher Polymerträgermaterialien, jedoch stehen die hohen Kosten der Silbertinte einer breiten Nutzung für Massenanwendungen bislang im Wege.

Das Fraunhofer-Team hat für die Herstellung von leitfähigen Bahnen preiswertere, kupferbasierte Tinten mit Partikelgrößen bis in den Mikrometerbereich benutzt. Die Tinte wurde mit Aerosoldruck auf Polymersubstraten gedruckt und mit dem speziell dafür entwickelten, selektiv auf die gedruckte Struktur wirkenden Elektronenstrahlverfahren gesintert.

Dabei wurde sowohl die Reduzierung des Leitbahnwiderstandes durch die Elektronenstrahlbehandlung von etwa 100 kΩ auf ≈ 1 Ω (entspricht bei gegebener Leitbahngeometrie ≈ 1·10-4 Ω cm) erreicht, als auch die Sinterwirkung durch Bildung von Sinterbrücken nachgewiesen.

Björn Meyer, der das Projekt am Fraunhofer FEP betreut, hebt folgende Vorteile des Verfahrens hervor: »Die Eindringtiefe und die Beschleunigungsspannung des Elektronenstrahlprozesses kann angepasst werden. Auch Temperaturprofile können gezielt eingestellt werden.« Es handelt sich also um ein flexibles Verfahren.

Die spezielle Verknüpfung aus einer preiswerten Tinte und einem Sinterverfahren, das für temperatursensible Substrate geeignet ist, eröffnet eine Vielzahl von neuen Anwendungsmöglichkeiten im Bereich der gedruckten Elektronik (z. B. die Massenfertigung von RFID-Antennen), im Rapid Prototyping sowie in der Kleinserienproduktion oder Reparatur von Leiterplatten. Das Projektteam testet gerne den Prozess für mögliche Anwendungen mit Interessenten aus der Industrie. Dabei ist auch der Einsatz anderer metallhaltiger Tinten sowie weiterer Substratmaterialien möglich.

Über Fraunhofer FEP

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP arbeitet an innovativen Lösungen auf den Arbeitsgebieten der Vakuumbeschichtung, der Oberflächenbehandlung und der organischen Halbleiter. Grundlage dieser Arbeiten sind die Kernkompetenzen Elektronenstrahltechnologie, Sputtern, plasmaaktivierte Hochratebedampfung und Hochrate-PECVD sowie Technologien für organische Elektronik und IC-/Systemdesign. Fraunhofer FEP bietet damit ein breites Spektrum an Forschungs-, Entwicklungs- und Pilotfertigungsmöglichkeiten, insbesondere für Behandlung, Sterilisation, Strukturierung und Veredelung von Oberflächen sowie für OLED-Mikrodisplays, organische und anorganische Sensoren, optische Filter und flexible OLED-Beleuchtung. Ziel ist, das Innovationspotenzial der Elektronenstrahl-, Plasmatechnik und organischen Elektronik für neuartige Produktionsprozesse und Bauelemente zu erschließen und es für unsere Kunden nutzbar zu machen. Das COMEDD (Center for Organics, Materials and Electronic Devices Dresden) führt seit 2014 alle bisherigen Aktivitäten im Bereich der organischen Elektronik unter dem Dach des Fraunhofer FEP weiter.

Kontakt: Björn Meyer | Telefon +49 351 2586 133 | EB-layer@fep.fraunhofer.de

Über Fraunhofer IKTS

Das Fraunhofer-Institut für Keramische Technologien und Systeme IKTS betreibt anwendungsorientierte Forschung für Hochleistungskeramik. Die drei Institutsteile in Dresden und Hermsdorf (Thüringen) formen gemeinsam das größte Keramikforschungsinstitut Europas. Als Forschungs- und Technologiedienstleister entwickelt das Fraunhofer IKTS moderne keramische Hochleistungswerkstoffe, industrierelevante Herstellungsverfahren sowie prototypische Bauteile und Systeme in vollständigen Fertigungslinien bis in den Pilotmaßstab. Das Institut arbeitet in acht marktorientierten Geschäftsfeldern, um keramische Technologien und Komponenten sowie zerstörungsfreie Prüfverfahren für neue Branchen, Produktideen und Märkte jenseits der klassischen Einsatzgebiete zu demonstrieren und zu qualifizieren. Dazu gehören keramische Werkstoffe und Verfahren, Maschinenbau und Fahrzeugtechnik, Elektronik und Mikrosysteme, Energie, Umwelt- und Verfahrenstechnik, Bio- und Medizintechnik, Optik sowie die Material- und Prozessanalyse.

Kontakt: Annika Ballin M. A. | Telefon +49 351 2553-72313 | annika.ballin@ikts.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/u6z

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Weitere Informationen:
http://www.fep.fraunhofer.de/de/press_media/10_2015.html?utm_campaign=pm1015de_idw

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Flammschutzmittel – Verborgene Lebensretter in Kunststoffen
20.07.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wie man Stickstoff zwingt, sich zu binden
20.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie