Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silberfreie antimikrobielle Beschichtung für Kunststoffe

12.09.2012
Wissenschaftlern des INNOVENT e.V. ist es gelungen, ein Verfahren zu entwickeln, mit dem kostengünstig antibakterielle Oberflächen auf praktisch allen Kunststoffen unabhängig von deren Geometrie erzeugt werden können.

Die Verbreitung von pathogenen Mirkoorganismen stellt heute ein großes Problem im Pflegebereich und in der Medizin dar, sowie überall dort, wo viele Menschen auf engem Raum verkehren.


Nachweis der antibakteriellen Wirkung nach ISO 22196. Eine Bakterienkultur wurde 24 Stunden mit unbehandeltem (links) und behandeltem (rechts) ABS in Kontakt gebracht und dann auf einem Nährboden angezüchtet. Auf dem behandelten ABS wurden alle Keime abgetötet, wie am ausbleiben der als weiße Punkte erkennbaren Bakterienkolonien zu erkennen ist.
INNOVENT e.V.

Es verschärft sich gegenwärtig durch das vermehrte Aufkommen so genannter multiresistenter Keime, wie z.B. dem MRSA („Multi-resistenter Staphylococcus aureus“), die unempfindlich gegen gängige Antibiotika geworden sind. Wichtige Verbreitungswege sind sämtliche Gegenstände, die von verschiedenen Personen berührt werden, wie Türklinken, Griffe, Bedienfelder von Geräten, Schalter, Tabletts und Toilettendeckel.

Erhebliche Probleme mit pathogenen Keimen gibt es auch bei medizinischen Hilfsmitteln, die längere Zeit mit dem menschlichen Körper in Kontakt bleiben, wie Kathetern und Drainagen oder Wundauflagen. Andere Bereiche, in denen die Bekämpfung von Mikroorganismen eine Rolle spielt, umfassen Keime, die unangenehme Gerüche entwickeln, etwa in Müllbehältern oder in der Kleidung.

Oberflächen mit antibakterieller Wirkung könnten einen entscheidenden Beitrag zur Lösung dieser Probleme leisten. Die heute gängigen Verfahren zur Erzeugung solcher antibakterieller Eigenschaften verwenden überwiegend oberflächlich aufgebrachtes Silber oder in das Material eingearbeitete Biozide wie Triclosan.

Bei Bioziden wie Triclosan wird aufgrund des Wirkmechanismus befürchtet, dass Bakterien dagegen resistent werden können - im Labor wurde diese Möglichkeit bereits nachgewiesen. Besonders bedenklich ist, dass die Keime in diesen Versuchen gleichzeitig eine Resistenz gegen andere Antibiotika entwickelt haben. Der breite Einsatz von Silber ist ebenfalls in Frage zu stellen, da die langfristige Wirkung dieses Schwermetalls auf Mensch und Umwelt kaum abzuschätzen ist.

Forscher des INNOVENT e.V. haben jetzt eine Möglichkeit entwickelt, antibakteriell wirkende Oberflächen zu erzeugen. Sie verwenden hierfür das kostengünstige Verfahren der Fluorierung. Die Technologie wird bislang z.B. angewendet, um Plastikbehälter undurchlässig für Lösungsmittel zu machen oder um die Benetzbarkeit von Kunstoffen mit Flüssigkeiten sowie die Festigkeit von Verklebungen und Bedruckungen auf Kunststoffen zu verbessern.

Die neue Methode kann bei praktisch allen Kunststoffen eingesetzt werden, um stark antibakterielle Oberfläche zu erzeugen. Durch Tests nach ISO Norm 22196 konnte die Wirksamkeit gegen eine Vielzahl von Keimen, darunter auch Staphylococcus aureus, nachgewiesen werden. Keiner der getesteten Keime zeigte sich gegen die so behandelten Oberflächen unempfindlich; auch das sich dagegen resistente Keime entwickeln können erscheint mit Blick auf den Wirkmechanismus äußerst unwahrscheinlich.

Ansprechpartner: Dr. Arnd Schimanski, Geschäftsführender Direktor INNOVENT e.V., as@innovent-jena.de

Andrea Gerlach | idw
Weitere Informationen:
http://www.innovent-jena.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften