Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensibel wie menschliche Haut: Polymer-Oberflächen mit hochpräziser Druckerkennung

24.10.2011
Menschliche Haut ist nicht nur so empfindlich, dass man den sprichwörtlichen "Schmetterlingsflügelschlag" wahrnehmen kann.

Sie ermöglicht auch eine räumliche Wahrnehmung von Drücken und Druckunterschieden – eine Fähigkeit, die für den menschlichen Tastsinn entscheidend ist. Vor allem in dieser Hinsicht war die Haut als biologisches Vorbild künstlichen Sensoren bisher klar überlegen.

Das könnte sich durch neuartige Sensormaterialien, die in Kooperation zwischen Forschern der Universitäten Bayreuth, Cambridge (England) und Nijmegen (Niederlande) entwickelt und untersucht wurden, bald ändern. Noch nie zuvor ist eine derart präzise laterale Auflösung bei Sensormaterialien erreicht worden.

Grundelement der Sensormaterialien ist eine Oberfläche, auf der Polymere so verankert sind, dass eine Schicht mit der Struktur einer Bürste entsteht. In den Polymeren ist zusätzlich ein spezieller Farbstoff enthalten. Wird nun ein Druck auf die Schicht ausgeübt, so wird die Bürste komprimiert. Abhängig von der Stärke des ausgeübten Drucks, ändert der Farbstoff seine optischen Eigenschaften. Die Änderung dieser Eigenschaften – genauer gesagt: der Farbsignale – kann direkt mit einem Mikroskop gemessen und damit ausgelesen werden. Das Sensormaterial "übersetzt" also verschieden starke Drücke in verschiedene Farbsignale. So entsteht im wahrsten Sinn des Wortes ein Abbild der Druckverteilung.

"Unser Ansatz ist insofern neu, als wir die Drucksensitivität direkt in den Materialeigenschaften verankert haben", erklärt Prof. Dr. Andreas Fery vom Lehrstuhl Physikalische Chemie II der Universität Bayreuth. "Konventionelle Drucksensoren basieren auf mechanischen Bauteilen wie Membranen, deren Änderung nicht unmittelbar sichtbar ist, sondern durch komplexere Verfahren ausgelesen werden muss. Unser Material ist hingegen so gestaltet, dass es über seine Farbeigenschaften Bescheid gibt, welcher Druck auf ihm lastet oder wie stark an ihm gezogen wird."

Das neue Konzept trägt Früchte: Die Sensitivität liegt im Bereich von Kilo-Pascal, ist also mit menschlicher Haut vergleichbar. Die laterale Auflösung, also die räumliche Wahrnehmung, ist sogar um bis zu 50mal genauer: Weltrekord. "Um die Grenzen der Sensitivität des Materials auszutesten, haben wir eine spezielle Apparatur eingesetzt, die es erlaubt, gezielt ultrakleine Kräfte auf Oberflächen auszuüben und gleichzeitig die optische Antwort auszulesen. Der Aufbau ist deutschlandweit einzigartig", meint der Bayreuther Physiker Johann Erath, der sich im Rahmen seiner Doktorarbeit mit der Thematik befasst. Mit theoretischen Überlegungen haben die Forscher gesetzmäßige Abhängigkeiten zwischen der Stärke des ausgeübten Drucks und der optischen Antwort des Materials herausarbeiten können.

Mit diesen Forschungsergebnissen eröffnen sich Perspektiven für eine Vielzahl neuartiger Beschichtungen und technologischer Anwendungen. In der Grundlagenforschung interessiert man sich dafür, wie beispielsweise Zellen mit anderen Oberflächen wechselwirken oder weshalb Geckos an den Wänden laufen können. Für das Verständnis beider Prozesse ist eine räumliche Auflösung der Druckverteilungen von zentraler Bedeutung.

Die Forschungsarbeiten wurden im Wissenschaftsmagazin "Angewandte Chemie International Edition" veröffentlicht und im Journal "Nature Materials" als Highlight vorgestellt. Die Förderung erfolgte durch die Deutsche Forschungsgemeinschaft sowie durch die Alexander von Humboldt-Stiftung, die Prof. Dr. Wilhelm T. S. Huck von der Universität Nijmegen mit dem Friedrich Wilhelm Bessel-Preis einen Forschungsaufenthalt an der Universität Bayreuth ermöglichte.

Veröffentlichung:

Johanna Bünsow, Johann Erath, P. Maarten Biesheuvel, Andreas Fery, and Wilhelm T. S. Huck,
Direct Correlation between Local Pressure and Fluorescence Output in Mechanoresponsive Polyelectrolyte Brushes,
in: Angewandte Chemie International Edition 2011, 50, pp. 9629 – 9632
DOI: 10.1002/ange.201102560
Die Veröffentlichung wurde kürzlich von Nature Materials, der international führenden Fachzeitschrift für Materialentwicklung, als Highlight vorgestellt:

Nature Materials 2011, 10, p. 724

Ansprechpartner für weitere Informationen:

Prof. Dr. Andreas Fery
Physikalische Chemie II
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55-2753
E-Mail: andreas.fery@uni-bayreuth.de
Dipl. Phys. Johann Erath
Physikalische Chemie II
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55-3912
E-Mail: johann.erath@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen