Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensibel wie menschliche Haut: Polymer-Oberflächen mit hochpräziser Druckerkennung

24.10.2011
Menschliche Haut ist nicht nur so empfindlich, dass man den sprichwörtlichen "Schmetterlingsflügelschlag" wahrnehmen kann.

Sie ermöglicht auch eine räumliche Wahrnehmung von Drücken und Druckunterschieden – eine Fähigkeit, die für den menschlichen Tastsinn entscheidend ist. Vor allem in dieser Hinsicht war die Haut als biologisches Vorbild künstlichen Sensoren bisher klar überlegen.

Das könnte sich durch neuartige Sensormaterialien, die in Kooperation zwischen Forschern der Universitäten Bayreuth, Cambridge (England) und Nijmegen (Niederlande) entwickelt und untersucht wurden, bald ändern. Noch nie zuvor ist eine derart präzise laterale Auflösung bei Sensormaterialien erreicht worden.

Grundelement der Sensormaterialien ist eine Oberfläche, auf der Polymere so verankert sind, dass eine Schicht mit der Struktur einer Bürste entsteht. In den Polymeren ist zusätzlich ein spezieller Farbstoff enthalten. Wird nun ein Druck auf die Schicht ausgeübt, so wird die Bürste komprimiert. Abhängig von der Stärke des ausgeübten Drucks, ändert der Farbstoff seine optischen Eigenschaften. Die Änderung dieser Eigenschaften – genauer gesagt: der Farbsignale – kann direkt mit einem Mikroskop gemessen und damit ausgelesen werden. Das Sensormaterial "übersetzt" also verschieden starke Drücke in verschiedene Farbsignale. So entsteht im wahrsten Sinn des Wortes ein Abbild der Druckverteilung.

"Unser Ansatz ist insofern neu, als wir die Drucksensitivität direkt in den Materialeigenschaften verankert haben", erklärt Prof. Dr. Andreas Fery vom Lehrstuhl Physikalische Chemie II der Universität Bayreuth. "Konventionelle Drucksensoren basieren auf mechanischen Bauteilen wie Membranen, deren Änderung nicht unmittelbar sichtbar ist, sondern durch komplexere Verfahren ausgelesen werden muss. Unser Material ist hingegen so gestaltet, dass es über seine Farbeigenschaften Bescheid gibt, welcher Druck auf ihm lastet oder wie stark an ihm gezogen wird."

Das neue Konzept trägt Früchte: Die Sensitivität liegt im Bereich von Kilo-Pascal, ist also mit menschlicher Haut vergleichbar. Die laterale Auflösung, also die räumliche Wahrnehmung, ist sogar um bis zu 50mal genauer: Weltrekord. "Um die Grenzen der Sensitivität des Materials auszutesten, haben wir eine spezielle Apparatur eingesetzt, die es erlaubt, gezielt ultrakleine Kräfte auf Oberflächen auszuüben und gleichzeitig die optische Antwort auszulesen. Der Aufbau ist deutschlandweit einzigartig", meint der Bayreuther Physiker Johann Erath, der sich im Rahmen seiner Doktorarbeit mit der Thematik befasst. Mit theoretischen Überlegungen haben die Forscher gesetzmäßige Abhängigkeiten zwischen der Stärke des ausgeübten Drucks und der optischen Antwort des Materials herausarbeiten können.

Mit diesen Forschungsergebnissen eröffnen sich Perspektiven für eine Vielzahl neuartiger Beschichtungen und technologischer Anwendungen. In der Grundlagenforschung interessiert man sich dafür, wie beispielsweise Zellen mit anderen Oberflächen wechselwirken oder weshalb Geckos an den Wänden laufen können. Für das Verständnis beider Prozesse ist eine räumliche Auflösung der Druckverteilungen von zentraler Bedeutung.

Die Forschungsarbeiten wurden im Wissenschaftsmagazin "Angewandte Chemie International Edition" veröffentlicht und im Journal "Nature Materials" als Highlight vorgestellt. Die Förderung erfolgte durch die Deutsche Forschungsgemeinschaft sowie durch die Alexander von Humboldt-Stiftung, die Prof. Dr. Wilhelm T. S. Huck von der Universität Nijmegen mit dem Friedrich Wilhelm Bessel-Preis einen Forschungsaufenthalt an der Universität Bayreuth ermöglichte.

Veröffentlichung:

Johanna Bünsow, Johann Erath, P. Maarten Biesheuvel, Andreas Fery, and Wilhelm T. S. Huck,
Direct Correlation between Local Pressure and Fluorescence Output in Mechanoresponsive Polyelectrolyte Brushes,
in: Angewandte Chemie International Edition 2011, 50, pp. 9629 – 9632
DOI: 10.1002/ange.201102560
Die Veröffentlichung wurde kürzlich von Nature Materials, der international führenden Fachzeitschrift für Materialentwicklung, als Highlight vorgestellt:

Nature Materials 2011, 10, p. 724

Ansprechpartner für weitere Informationen:

Prof. Dr. Andreas Fery
Physikalische Chemie II
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55-2753
E-Mail: andreas.fery@uni-bayreuth.de
Dipl. Phys. Johann Erath
Physikalische Chemie II
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55-3912
E-Mail: johann.erath@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie