Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sich selbst reparierende Membranen: Die Natur hat gezeigt, wie’s geht

23.09.2011
Lianen, deren Festigungsring aus verholzten Zellen nach einer Verletzung von selber heilt, dienen Bionik-Experten als Vorbild für selbstreparierende Membranen wie sie etwa in Schlauchbooten zum Einsatz kommen könnten.

Empa-Forscher haben sich einen «Trick» der Natur zu eigen gemacht und eine geschlossenzellige Polymerschaumbeschichtung entwickelt, die nicht nur den Druckverlust nach einer Beschädigung der Membran vermindert, sondern auch aufblasbare Strukturen widerstandsfähiger und langlebiger macht. In der aktuellen Ausgabe des «Journal of Bionic Engineering» berichten sie darüber.


Die Membrane aus Polyvinylchlorid-Polyester (gelblich) wurde mit einer Nadel von 2,5 Millimeter Durchmesser durchstochen, worauf sich der Polyurethan-Schaum (braun) schlagartig ausdehnte. Bild: Empa

Verhängnisvoll ist ein Loch im Schlauchboot nur, wenn die Luft derart schnell entweicht, dass das rettende Land nicht mehr erreicht wird. Weniger dramatisch, doch gleichwohl unangenehm ist es, auf einer löchrigen Luftmatratze die Nacht zu verbringen. Doch selbst darauf liesse sich noch ungestört schlafen, wenn die Luft nur langsam genug ausströmte. Selbstreparierende Schichten aus porösem Material sollen in Zukunft dafür sorgen, dass Membranen von aufblasbaren Objekten nicht nur wasser-und luftdicht sind, sondern kleine Löcher sich auch selber stopfen können. Zumindest vorübergehend.

Die Idee hierfür stammt aus der Natur. In ihr entdecken Bionik-Fachleute immer wieder verblüffende Konstruktionsprinzipien, aus denen Ingenieure dann zahlreiche technische Lösungen ableiten. So auch zur Selbstreparatur von Materialien: Der Selbstheilungsprozess der Pfeifenwinde (Aristolochia macrophylla), eine Liane in den Bergwäldern Nordamerikas, lieferte den Biologinnen der Universität Freiburg im Breisgau den entscheidenden Hinweis. Werden die verholzten Zellen des Festigungsgewebes, die den Pflanzen ihre Biegefestigkeit verleihen, verletzt, verarztet sich die Pflanze durch «erste Hilfe». Parenchym-Zellen des darunter liegenden Grundgewebes dehnen sich rasch aus und verschliessen die Wunde von innen. Erst in einer späteren Phase setzt die eigentliche Heilung ein, das ursprüngliche Gewebe wächst nach.

«Selbstheilende» aufblasbare Strukturen

Dieses Prinzip soll nun in einem vom deutschen Bundesministerium für Bildung und Forschung geförderten Bionik-Projekt auf Werkstoffe – genauer auf Membranen – übertragen werden. Sobald eine Membran verletzt wird, soll eine zusätzliche Schicht dank ihrer mechanischen Vorspannung – ähnlich dem Vorbild aus der Natur – «erste Hilfe» leisten und Löcher bis zur «richtigen» Reparatur verschliessen.

Während sich Forschende der Albert-Ludwigs-Universität Freiburg unter der Leitung von Olga Speck mit den biologischen und chemischen Aspekten des Vorbilds Liane beschäftigen, arbeiten Rolf Luchsinger und Markus Rampf, Forscher am «Center for Synergetic Structures» der Empa, an der technischen Lösung für Polymer-Membranen. Luchsingers Hintergrund sind allerdings weder Schlauchboote noch Luftmatratzen, sondern tragende pneumatische Strukturen für den Leichtbau. Die so genannten Tensairity-Balken dienen als Elemente für schnell aufgebaute, leichte Brücken und Dächer. Ziel der Untersuchungen ist es zu verstehen, unter welchen Bedingungen sich ein Loch schliesst, wenn der Schaum auf der Membran sich nach einer Verletzung ausdehnt. Im Rahmen seiner Dissertation untersucht Rampf diesen Prozess mit Hilfe einer Versuchsanlage, die eine Membran pneumatisch unter Druck setzen und anschliessend mit einer Nadel punktieren kann.

«Löchrige» Luftmatratze hält

Einen ersten Zwischenerfolg haben die Empa-Forscher bereits erzielt; ein Zweikomponentenschaum aus Polyurethan und Polyester dehnt sich unter Überdruck, wie er im Loch durch die austretende Luft herrscht, schlagartig aus. «Im Labor funktioniert‘s», sagt Rolf Luchsinger, «wir erreichen hohe Reparaturfaktoren.» Was bedeutet: Wenn es bislang nötig war, eine Luftmatratze mit einem Volumen von 200 Litern alle fünf Minuten aufzupumpen, hält sie jetzt acht Stunden; der Druckabfall von 200 auf 50 Millibar zieht sich so lange hin, dass genug Zeit bleibt, um eine Nacht durchzuschlafen. «Wir wissen nun genug über den Schaum, um mit Herstellern von Membranen Gespräche über eine Umsetzung für den Markt zu führen», so Luchsinger über die nächsten Schritte.

Literaturhinweis
M. Rampf, O. Speck, T. Speck, R. Luchsinger, Self-Repairing Membranes for Inflatable Structures Inspired by a Rapid Wound Sealing Process of Climbing Plants, Journal of Bionic Engineering, 8 (2011) 242–250,

doi: 10.1016/S1672-6529(11)60028-0

Weitere Informationen
Dr. Rolf Luchsinger, Center for Synergetic Structures, Tel. +41 58 765 40 90, rolf.luchsinger@empa.ch
Markus Rampf, Center for Synergetic Structures, Tel. +41 58 765 48 64, markus.rampf@empa.ch

Dr. Olga Speck, Albert-Ludwigs-Universität Freiburg, Kompetenznetz Biomimetik, Tel. +49 761 203 28 03, olga.speck@biologie.uni-freiburg.de

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: BIONIC Luftmatratze Membran Schaum Schicht Schlauchboot Synergetic

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten