Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sehen – aber nicht gesehen werden

13.04.2011
Mit Textilien Infrarot-Strahlung erfolgreich abschirmen

Moderne Uniformen und militärische Tarnsysteme für Objekte und Gebäude schützen heute nicht mehr alleine mit Hilfe geeigneter, auf die Umgebung abgestimmter Tarndrucke vor der Sichtung. Durch spezielle Materialien kann zusätzlich die verräterische infrarote Wärmestrahlung (IR-Strahlung) abgeschirmt werden.

Bisher sorgen i.d.R. die IR-absorbierenden Küpenfarbstoffe des Camouflage-Prints dafür, dass die Träger für die CCD-Sensoren von Nachtsichtgeräten weitgehend „unsichtbar“ sind. Allerdings stößt die Absorptionsfähigkeit der Farbstoff-Partikel schnell an ihre Grenzen.

Im Rahmen eines Forschungsprojektes (AiF-Nr. 15598) haben Wissenschaftler der Hohenstein Institute in Bönnigheim und des ITCF Denkendorf neuartige IR-absorbierende Textilien entwickelt. Durch die Dotierung (Einbindung) oder Beschichtung von Chemiefasern mit Indiumzinnoxid-Nanopartikeln (ITO) kann die Wärmestrahlung deutlich effektiver absorbiert und damit eine bessere Abschirmungswirkung erreicht werden als bei konventionellen Tarndrucken.

Bei ITO handelt es sich um transparente Halbleiter, die z. B. auch in Touchscreens von Smartphones zum Einsatz kommen. Die Herausforderung bestand für die Forscher darin, die ITO-Partikel so mit den Textilien zu verbinden, dass deren sonstige Eigenschaften wie der physiologische Komfort nicht negativ beeinflusst werden. Zudem musste die Beständigkeit der textilen Ausrüstung gegenüber Waschen, Scheuern und Bewitterung sichergestellt werden.

Zur Beurteilung der abschirmenden Wirkung der Textilausrüstung wurde die Absorption, Transmission und Reflexion im Wellenbereich von 0,25 – 2,5 μm ermittelt, d. h. von UVStrahlung, sichtbarem Licht und nahem Infrarot (NIR). Dabei zeigte sich insbesondere bei der bei Nachtsichtgeräten relevanten NIR-Abschirmung eine deutliche Verbesserung gegenüber unbehandelten Vergleichsmustern.

Bei den spektroskopischen Untersuchungen konnte das Expertenteam auf den reichen Erfahrungsschatz und die neueste spektroskopische Ausrüstung der Hohenstein Institute zurückgreifen, wie sie auch außerhalb von Forschungsprojekten zum Einsatz kommt: So ermitteln die Spezialisten im Kundenauftrag u. a. auch den UV-Schutz-Faktor (UPF) von Textilien und überprüfen Farbvorgaben sowie Toleranzen, wie sie sich aus technischen Lieferbedingungen ergeben.

Aufbauend auf die aktuellen Forschungsergebnisse sollen die IR-absorbierenden Textilien in künftigen Projekten weiter hinsichtlich ihres Wärme- und Schweißmanagements optimiert werden. Ziel ist es dabei, bereits die Entstehung verräterischer naher und mittlerer IR-Strahlung in Form von abstrahlender Körperwärme zu verhindern und damit die Detektion weiter zu erschweren. Durch eine optimale Unterstützung der physiologischen Vorgänge im menschlichen Körper wird zudem die uneingeschränkte Leistungsfähigkeit der Soldaten auch unter extremen klimatischen Bedingungen oder bei körperlicher Anstrengung sichergestellt. Die Forscher profitieren dabei von der jahrzehntelangen Erfahrung der Hohenstein Institute bei der objektiven Beurteilung und Optimierung funktioneller Textilien. Diese ist u. a. in eine Vielzahl international standardisierten Untersuchungsmethoden eingeflossen, auf die das Expertenteam in seiner Arbeit zurückgreifen kann.

Rose-Marie Riedl | Hohenstein Laboratories
Weitere Informationen:
http://www.hohenstein.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics