Schutz für Menschen auf dem Mars / GSI testet Mond- und Marsgestein für zukünftige Bodenstationen

Mit dem GSI-Linearbeschleuniger wird die kosmische Strahlung erzeugt.<br><br>Foto: A.Zschau / GSI<br>

Für einen solchen Langzeitflug und den Aufenthalt auf Mond und Mars müssen sich Astronauten vor der kosmischen Strahlung schützen, denn sie ist krebserregend. Im Auftrag der Europäischen Raumfahrtorganisation ESA untersucht die GSI Helmholtzzentrum für Schwerionenforschung GmbH, ob sich Mond- und Marsgestein eignet, um daraus Schutzschilder für Bodenstationen zu bauen.

Auf der Erde schwächen Atmosphäre und Magnetfeld die kosmische Strahlung ab. Doch auf Mond und Mars prasselt sie fast ungehindert ein. Die Strahlung kann durch Schädigung von Zellen und DNA bei den Astronauten zu Krebs führen.

Chiara La Tessa ist Experiment-Leiterin in der GSI-Biophysik. Sie erklärt, warum Mond- oder Mars-Stationen nicht aus High-Tech-Material von der Erde gebaut würden: „In der Raumfahrt zählt jedes Gramm. Baumaterial mit einem Raumschiff durchs All zu transportieren würde die Kosten explodieren lassen. Deshalb würden Bodenstationen, insbesondere die Schutzschilder, vor allem aus Mond- und Marsgestein gebaut. Von Rovern, die Proben analysiert haben, ist bekannt, wie der Sand und die Steine dort zusammengesetzt sind.
Mit dieser Information kann man Mondgestein und Marssand auf der Erde herstellen und wir testen sie auf ihre Eigenschaften.“ Die kosmische Strahlung – schnelle Ionen, die bei Sternexplosionen ins All geschleudert wurden – wird dafür mit dem GSI-Teilchenbeschleuniger erzeugt. Kaum eine Anlage kann die einzigartige Zusammensetzung der Ionen im All so genau simulieren wie GSI.

Nachdem das GSI-Team am amerikanischen Beschleunigerlabor in Brookhaven getestet hatte, wie viel Strahlung die Gesteinsplatten abhalten können, haben die Biophysiker nun bei GSI erforscht, wie viele Neutronen in den verschiedenen Materialien entstehen, wenn sie bestrahlt werden.

Trifft kosmische Strahlung auf das Gestein, zerschmettert sie manche Atomkerne in ihre Einzelteile, weil sie mit voller Wucht aufprallt. Dabei entstehen freie Neutronen. Sie wirken anders auf den menschlichen Körper als die kosmische Strahlung und können abhängig von ihrer Geschwindigkeit sogar schädlicher sein.

Wie stark der Neutroneneffekt bei Mond- und Marsgestein ist und wie weit er sich durch das Material fortsetzt, wird bei GSI erforscht. „Ich kann noch nicht einschätzen, wie das Material auf Bestrahlung reagiert“, sagt La Tessa. „Werden viele Neutronen entstehen? Wie viele sind schnell und wie viele langsam? Das werden uns die Versuchsdaten sagen, wenn wir sie ausgewertet haben.“

Die von ESA finanzierten Tests wurden von Thales Alenia Space Italia koordiniert. Das Unternehmen ist Hauptpartner dieses Projekts und hat unter anderem das Experiment in Zusammenarbeit mit GSI geplant, die Materialien ausgesucht und wird die Ergebnisse einordnen.

Media Contact

Dr. Ingo Peter idw

Weitere Informationen:

http://www.gsi.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer