Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell, berührungslos: Dehnungsmessverfahren für thermisch-mechanisch hoch belastete Werkstoffe

20.06.2017

Werkstoffe für Leichtbau und Hochtemperaturanwendungen müssen vor ihrer Verwendung zunächst qualifiziert werden, um sie optimal einsetzen zu können. Die dafür notwendigen Ermüdungsversuche können mit einem neu entwickelten optischen Dehnungsmesssystem nun mit deutlich schnelleren Prüffrequenzen durchgeführt werden, ohne dass es durch die Verwendung von konventionellen, berührenden Messsystemen zu einer ungewollten Beschädigung der Prüfkörper kommt. Das von den Fraunhofer-Instituten IWM und IPM entwickelte Verfahren vereint die Vorteile bisheriger Messverfahren. Es wird vom 27. bis 29. Juni 2017 auf der »8th International Conference on Low Cycle Fatigue LCF8« in Dresden präsentiert.

Hochleistungswerkstoffe verbessern die Funktion und erweitern den Einsatzbereich von Maschinen und Anlagen, beispielsweise im Leichtbau und in Hochtemperaturanwendungen der Automobilindustrie, in Kraftwerksanlagen oder in Flugzeugtriebwerken. Komponenten auf Basis von Hochleistungswerkstoffen müssen jedoch jeweils qualifiziert werden, um die Belastbarkeit und Sicherheit des späteren Produkts zu gewährleisten.


Zyklischer Ermüdungsversuch bei 1000 °C mit taktilem und optischem Dehnungssensor.

© Fraunhofer-Institut für Werkstoffmechanik IWM und Fraunhofer-Institut für Physikalische Messtechnik IPM

Im Hinblick auf die mechanischen Eigenschaften und das Lebensdauerverhalten geschieht dies beispielsweise mit hochfrequenten Ermüdungsversuchen unter zyklischer, wiederkehrender Belastung. Doch diese Messungen stellen hohe Ansprüche an die Messgeschwindigkeit der eingesetzten Dehnungsmesssysteme.

Jetzt ist es Forschenden am Fraunhofer-Institut für Werkstoffmechanik IWM und Fraunhofer-Institut für Physikalische Messtechnik IPM in einem gemeinsamen Projekt gelungen, die Messgeschwindigkeit für die berührungsfreie Dehnungsmessung im Rahmen von Ermüdungsversuchen um den Faktor zehn zu steigern.

Berührungs- und markierungsfreie Dehnungsmessung

Optische Dehnungsmesssysteme funktionieren berührungslos und beeinflussen somit die Probe nicht. Dieser Vorteil gilt bereits für heute übliche optische Systeme. Ihr großer Nachteil ist jedoch bisher die langsame Bildverarbeitungsgeschwindigkeit, welche die Mess- und somit auch Regelungsfrequenz begrenzt. Solch hohe Messraten sind eine Grundvoraussetzung für die optische Dehnungsregelung, an der die Wissenschaftler beider Institute aktuell mit Hochdruck arbeiten.

Hohe Regelungs- und Messfrequenzen wurden bei Ermüdungsversuchen bisher nur mit taktilen Extensometern erreicht: Der dabei notwendige Anpressdruck der Extensometerstäbe kann, insbesondere bei Versuchsbedingungen, die im Bereich der Werkstoffbelastungsgrenze liegen, zu einer ungewollten Schädigung der Probe und somit Verfälschung der Messergebnisse führen.

Das neue optische Messsystem nutzt schnelle, moderne Bildverarbeitungstechnologien erstmals dazu, die Vorteile taktiler und optischer Extensometer zu kombinieren: Schnelle, hochauflösende Kameras erfassen auch auf polierten Proben zuverlässig Oberflächenstrukturen und nutzen diese als natürliche Marker bei der Bildverarbeitung. Dadurch entfällt die aufwändige Probenpräparation zur Aufbringung von künstlichen Markern.

Auswertung mit 1000 Hz

Durch eine parallelisierte Bildauswertung auf Grafikkarten lässt sich die Dehnung aktuell bereits berührungslos mit mehr als 1000 Hz messen – zuvor waren bei optischen Systemen nur Messraten bis 100 Hz möglich. Die Messgenauigkeit des neuen Fraunhofer-Dehnungsmesssystems entspricht der Klasse 0,5 nach DIN ISO 9513. Die Größe des Bildfeldes kann an die Prüfaufgabe angepasst werden, sodass die Echtzeit-Auswertung zukünftig auch dehnungsgeregelte Versuche im Mikro- und Makrobereich erlaubt.

Das optische Messsystem bietet zukünftig auch die Möglichkeit von weiteren bildverarbeitenden Analysen. So könnte beispielsweise die Schädigungsentwicklung in Echtzeit oder im Nachgang analysiert werden. So erhalten Projektpartner exaktere Messdaten für noch genauere Vorhersagen der Bauteillebensdauer.

Weitere Informationen:

http://www.lcf8.de - 8th International Conference on Low Cycle Fatigue LCF8
http://www.iwm.fraunhofer.de/de/presse/pressemitteilungsliste/20_06_17_neues_deh... - Pressemitteilung online

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie