Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schlauch, der Leben retten soll

29.10.2012
Die Professur Fördertechnik der TU Chemnitz ist an der Entwicklung eines Rettungsschlauches beteiligt - Ziel: Evakuierung aus Hochhäusern, von Bohrinseln und anderen Gebäuden

Am 11. September 2001 stürzten die beiden Türme des World Trade Centers in New York ein, nachdem sie durch terroristische Flugzeuganschläge in Brand gesetzt wurden. Menschen oberhalb der brennenden Etagen hatten keine Möglichkeit, sich aus den Gebäuden zu retten.


Der Rettungsschlauch besteht aus einer inneren und einer äußeren Gewebekonstruktion, deren Verbindung stark beansprucht wird. Ob die verwendeten Materialien den hohen Belastungen standhalten können, testet Lars Jahreis von der Professur Fördertechnik im Prüflabor der TU Chemnitz.

Foto: TU Chemnitz/Wolfgang Schmidt

Manche sprangen ungesichert und in Panik aus den Fenstern. "Dieses Szenario hat gezeigt, dass für Gebäude ein weiterer Evakuierungsweg gebraucht wird, um Menschen in Sicherheit zu bringen, wenn die Treppen nicht mehr passierbar sind", sagt Lars Jahreis, Wissenschaftlicher Mitarbeiter der Professur Fördertechnik der Technischen Universität Chemnitz. Die TU-Fördertechniker haben gemeinsam mit einer in Deutschland ansässigen Tochterfirma (AHI-D) des schweizerischen Unternehmens AH Invention AG sowie weiteren sächsischen Unternehmen einen Rettungsschlauch entwickelt, der genau dies leisten kann.

Installiert wird das System in einem Container auf dem Dach oder in einer der oberen Etagen des Gebäudes. Im Notfall wird das Evakuierungssystem vollautomatisch entlang der Fassade bis zum Erdboden herabgelassen und verankert. Bei Bohrinseln endet die Schlauchkonstruktion direkt in den Rettungskapseln. Geführt wird das Schlauchsystem dabei über Stahlseile, die es in Form halten und zusätzlich die Belastungen aufnehmen, die durch die Evakuierung und Wind entstehen.

Von einer im Container befindlichen Plattform steigen die Menschen nach Freigabe des Evakuierungssystems selbstständig in den Schlauch. Dieser besteht aus einer äußeren und einer inneren Gewebekonstruktion. Die innere Konstruktion bildet ein Luftkammersystem, das durch Ventile gesteuert wird. Abgebremst werden die Menschen auf dem Weg bis zum Boden deshalb nicht nur über Reibung, sondern sie verdrängen hauptsächlich die Luft in den Kammern und geben so ihre Bewegungsenergie ab. An der Außenhaut angebrachte und mit den Führungsseilen verbundene Federsysteme halten dabei das System in einer stabilen Form. Unten angekommen gleitet der Gerettete die letzten Meter auf einer Rutsche aus dem Evakuierungssystem. Ein wechselseitiger Ausstieg sorgt für ausreichend Zeit zum Verlassen des Systems.

Die Außenhaut des Schlauches besteht aus einem Aramidgewebe, das mit Aluminium beschichtet ist. Aramid, ist ein Hochleistungswerkstoff, der unter anderem für Schutzkleidung eingesetzt wird. Im Schlauchsystem hat das Aramid die Aufgabe, die hohe Bewegungsenergie des Systems aufzunehmen und an die Tragkonstruktion weiterzuleiten. Das Aluminium der Außenbeschichtung reflektiert Hitze und dichtet gleichzeitig das Gewebe gegen Rauch ab.
"Dadurch ist die Schlauchkonstruktion weitgehend hitzebeständig. So kann der Rettungsschlauch auch dann noch sicher genutzt werden, wenn kurzzeitig Flammen aus dem Gebäude schlagen“, so Jahreis. Das Innenmaterial, an dem die Person entlanggleitet, ist mit einem Kunststoff beschichtet, der gute Gleiteigenschaften aufweist. Der beim Rutschen durch Reibung entstehende Temperaturanstieg liegt zum aktuellen Stand der Forschung bei maximal 15 Grad Celsius. "Das wollen wir noch weiter optimieren, aber schon jetzt sind Verbrennungen weitgehend ausgeschlossen", sagt Jahreis.

Zum Einsatz kann das Rettungssystem sowohl in neu geplanten Hochhauskomplexen als auch an Bohrinseln kommen. "Momentan ist das System auf maximal 100 Meter ausgelegt. Aber eine Erhöhung auf mehrere Hundert Meter ist bei den noch laufenden Entwicklungsarbeiten realistisch", so Jahreis. Darüber hinaus kann das System aber auch Gebäude ergänzen, bei denen sich die Nutzung im Laufe der Zeit so geändert hat, dass heute mehr Fluchtwege gebraucht werden, als sie im ursprünglichen Nutzungskonzept eingeplant waren.
Getestet haben die Wissenschaftler den Rettungsschlauch mit dem Namen "Swiss Rescue System (SRS)" in einem 24 Meter hohen Turm in Görlitz. Dabei kamen zuerst Säcke, später Dummys und schließlich Probanden mit und ohne Sicherungsseilen zum Einsatz. Das Projekt wurde von der Sächsischen Aufbaubank mit 1,4 Millionen Euro gefördert. In einer zweiten Phase des Projektes soll ab Dezember 2012 der Rettungsschlauch optimiert und in enger Zusammenarbeit mit dem TÜV Süd bis Mitte 2014 für den Einsatz als Evakuierungssystem zertifiziert werden. Die Fertigung des Schlauches übernimmt die Firma Golle Zelte und Planen GmbH in Plauen. Ein vierter Kooperationspartner, die Firma BMS Stahlbau GmbH aus Görlitz, entwickelt und fertigt den Großteil der Systemperipherie, mit der das Schlauchsystem herausgefördert wird. Ziel der weiteren Forschung ist unter anderem, das Gewicht des Rettungsschlauches zu reduzieren. "Das Gesamtsystem darf nicht zu schwer sein, damit es in oder auf das Gebäude integriert werden kann", sagt Jahreis und ergänzt: "Deshalb werden wir versuchen, unter anderem die Stahlseile, die den Schlauch führen, durch Faserseile zu ersetzen. Auf diesem Gebiet haben wir an der Professur Fördertechnik bereits langjährige Erfahrungen, sodass dieser Schritt sicher in naher Zukunft gelingt."

Der Rettungsschlauch gilt jedoch laut deutscher Gesetzgebung nicht als Rettungsweg. Er dient lediglich der Evakuierung, bei der sich die gefährdeten Menschen selbst in Sicherheit bringen können. "Der Rettungsschlauch deckt vor allem die Zeit ab, zwischen dem Eintritt beispielsweise eines Brandes und dem Eintreffen der Rettungskräfte", erklärt Jahreis und resümiert: "Mit dem SRS haben wir eine Evakuierungsmöglichkeit entwickelt, die weit über den Stand der Technik hinausgeht. Mit seiner Hilfe wird es möglich sein, im Notfall sehr viele Menschenleben zu retten."

Weitere Informationen erteilen Lars Jahreis, Telefon 0371 531-39376, E-Mail lars.jahreis@mb.tu-chemnitz.de und Dr. Thomas Linke, Telefon 0371 531-32330, E-Mail thomas.linke@mb.tu-chemnitz.de.

Katharina Thehos | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie