Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sanfte Kraft für Roboter

26.04.2016

Ein weicher Aktuator aus elektrisch steuerbaren Membranen könnte Menschen die gefahrlosen Interaktion mit Maschinen ermöglichen

Im Umgang mit Menschen muss ein Roboter vor allem eines sein: sicher. Wenn er etwa als Haushaltshilfe auf einen Menschen trifft, darf er seine Bewegungen nicht stur ausführen, sondern muss im Zweifelsfall nachgeben.


Elastische Kraftmaschine: Luftgefüllte mit Membranen verschlossene Kammern können als Aktuatoren dienen, die Menschen den gefahrlosen Kontakt mit Robotern ermöglichen. Die Membranen sind auf beiden Seiten mit dehnbaren Elektroden beschichtet, die unter Spannung gesetzt eine Ausdehnung der Membran bewirken. Zudem sind sie bistabil. Das heißt, sie können bei einem Luftdruck ein kleineres und ein größeres Volumen umschließen. Eine Membran lässt sich vom kompakteren in den ausgedehnteren Zustand schalten, indem eine Spannung an ihre Elektroden angelegt wird. So lässt sich auch unter drei miteinander verbundenen blasenförmigen Kammern eine ansteuern, um sie aufzupumpen und mit ihr so eine Kraft auszuüben.

© Alejandro Posada

Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart stellen nun ein  Bewegungssystem vor, einen sogenannten elastischen Aktuator, der für Menschen ungefährlich ist und sich platzsparend in Roboter integrieren lässt. Der Aktuator arbeitet mit sehr elastischen Membranen, die luftgefüllte Kammern umschließen.

Das Volumen der Kammern lässt sich dabei über ein elektrisches Feld an der Membran verändern. Bislang arbeiten elastische Aktuatoren, die durch die Ausdehnung luftgefüllter Kammern eine Kraft ausüben, mit Pumpen und Kompressoren. Da diese zu sperrig sind, um sie im Roboter unterzubringen, werden sie über Druckluftschläuche an diesen angeschlossen.

Mit einem weichen Bewegungsapparat, wie ihn die Stuttgarter Forscher nun entwickelt haben, würde das überflüssig. Viele Roboter haben sich inzwischen unentbehrlich gemacht, und in ihren Arbeitsbereichen wird es auch akzeptiert, dass sie Menschen gefährlich werden können. Sie montieren etwa in der Automobilindustrie schnell und zuverlässig Fahrzeuge, werden vor dem direkten Kontakt mit Personen allerdings gut abgeschirmt.

Denn sie sind, dass sie ihre Bewegungen präzise und unnachgiebig durchziehen, so dass sie Menschen schlimm verletzen könnten. Roboter mit weichen Aktuatoren, die Kontaktpersonen nicht schaden können, liegen dagegen an der Leine von Druckluftschläuchen und können sich daher nur in einem eingeschränkten Radius bewegen. Das könnte sich demnächst ändern.

„Wir haben einen sicheren Aktuator entwickelt, der große Änderungen der Form ohne eine Druckluftzufuhr von außen ermöglicht“, sagt Metin Sitti, Direktor am Max-Planck-Institut für Intelligente Systeme.

Die Vorrichtung besteht aus einem dielektrischen Elastomer-Aktuator (DEA): einer Membran, die wie ein Luftballon hyperelastisch ist und von beiden Seiten mit dehnbaren Elektroden beschichtet ist. Über ein elektrisches Feld zwischen den Elektroden lässt sich die Ausdehnung der Membran regulieren, da sich die Elektroden gegenseitig anziehen und die Membran zusammendrücken, wenn sie unter eine elektrische Spannung gesetzt werden.

Eine einzelne steuerbare Membran eignet sich allerdings noch nicht als Aktuator. Dafür muss sie eine luftgefüllte Kammer umschließen, und mindestens zwei solcher blasenartigen Kammern müssen über ein Röhrchen miteinander verbunden werden.

Luft wird zwischen zwei Kammern verschoben

Zudem muss die Membran zwei stabile Zustände aufweisen. Das heißt, sie muss bei einem Druck zwei verschiedene Volumina einschließen können, ohne den Drang, das größere Volumen zu minimieren. Das ist in etwa so, als würde man aus einem aufgeblasenen Luftballon die Luft entweichen lassen, wobei dieser aber nicht auf die ursprüngliche Größe schrumpfte, sondern deutlich größer bliebe.

Dank des bistabilen Zustandes des Kunststoffs können die Stuttgarter Forscher die Luft zwischen einer stärker und einer schwächer aufgeblähten Kammer gewissermaßen hin und her schieben. Zu diesem Zweck legen sie jeweils an die Membran der weniger voluminösen Kammer eine elektrische Spannung an. Die Kammer dehnt sich dann aus und saugt die Luft aus der anderen Blase. Schalten die Wissenschaftler die Spannung ab, zieht sich die Membran zwar wieder zusammen, aber nicht auf das ursprüngliche Volumen, sondern ein größeres, das ihrem ausgedehnteren Zustand entspricht.

„Wichtig ist es, geeignete hyperelastische Polymere zu finden, die in dem Aktuator eine starke und schnelle Verformung ermöglichen und lange haltbar sind“, sagt Metin Sitti. Daher testeten die Wissenschaftler nicht nur verschiedene Membranmaterialien, sondern entwickelten auch Modelle, um das Verhalten eines Elastomers im Aktor systematisch zu erfassen.

Die Elastomere, die Metin Sittis Team bislang untersucht hat, bringen jeweils unterschiedliche Vor- und Nachteile mit sich: So verformen sich manche stark, aber nur langsam. Bei anderen ist es genau umgekehrt. „Um verschiedene Eigenschaften in einer Membran zu  vereinen, werden wir unterschiedliche Materialien kombinieren“, so Sitti.

Das ist aber nur einer der nächsten Schritte, die er und sein Team planen. Darüber hinaus werden sie ihren Aktuator in einen Roboter integrieren, damit dieser etwa seine Beine hebt, aber nachgibt, wenn er dabei zufällig auf einen Menschen trifft. Erst dann können die Maschinenwesen auch gefahrlos mit Personen umgehen.

Die Forschung von Metin Sitti wird durch die Max-Planck-Förderstiftung unterstützt.

Ansprechpartner

Professor Dr. Metin Sitti

Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

Telefon:+49 711 689-3401Fax:+49 711 689-3412
E-Mail:officesitti@is.mpg.de

Annette Stumpf

Telefon:+49 711 689-3089Fax:+49 711 689-1932
E-Mail:stumpf@is.mpg.de

Originalpublikation

Lindsey Hines, Kirstin Petersen und Metin Sitti
Inflated Soft Actuators with Reversible Stable Deformations

Professor Dr. Metin Sitti | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Weitere Informationen:
https://www.mpg.de/10475055/roboter-aktuator-elastisch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

21.500 Euro für eine grüne Zukunft – Unserer Umwelt zuliebe

20.01.2017 | Unternehmensmeldung

innovations-report im Interview mit Rolf-Dieter Lafrenz, Gründer und Geschäftsführer der Hamburger Start ups Cargonexx

20.01.2017 | Unternehmensmeldung

Niederlande: Intelligente Lösungen für Bahn und Stahlindustrie werden gefördert

20.01.2017 | Förderungen Preise