Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUBIN Werkstoff-Engineering: Blitzschnell verschleißfeste Bauteile

10.10.2011
Starker Stromschlag verdichtet Pulver „kalt“
Energieeffizient Werkstoffe herstellen

Forscher am RUB-Lehrstuhl Werkstofftechnik arbeiten an einem neuartigen Verfahren, das es erlaubt, verschleißfeste Stahlbauteile innerhalb von wenigen Millisekunden herzustellen. Dazu wird elektrische Energie in Kondensatoren gespeichert und dann impulsartig in eine Metallpulvermischung entladen.

Die entstehende Hitze verdichtet das Pulver blitzschnell zu festen Bauteilen. Die Methode ist energieeffizienter als herkömmliche Verfahren und erlaubt die Herstellung neuer Materialien mit speziellen Eigenschaften.

Über ihre Methode berichten sie in RUBIN Werkstoff-Engineering, der aktuellen Sonderausgabe des RUB-Wissenschaftsmagazins.

Vollständiger Beitrag und Bilder im Netz

Den vollständigen Beitrag mit Bildern zum Herunterladen finden Sie im Internet unter: http://www.rub.de/rubin

Stundenlang im herkömmlichen Ofen

Bauteile, die starkem Verschleiß ausgesetzt sind, werden häufig in sehr hohen Stückzahlen hergestellt, etwa Schneidplättchen für Bandsägen. Oft fertigt man sie aus Stahlpulvern, dank denen man den Werkstoff maßschneidern kann. Grobe, harte Partikel werden in die weichere Stahlmatrix eingebettet, so dass sie sich Furchen entgegenstellen, während die weiche Matrix Risse verhindert. Herkömmliche Herstellungsverfahren sind aber sehr aufwändig und teuer: Das Pulver muss bei über 1000°C und über 1000 bar Druck über mehrere Stunden in einem Ofen verdichtet werden. Die lange Dauer des Prozesses ermöglicht außerdem unerwünschte Prozesse im Material. Manche Hartstoffe lösen sich dabei auf und können nicht verwendet werden, obwohl sie für die spätere Anwendung optimale Eigenschaften bieten würden.

Blitzartige Verdichtung erlaubt ganz neue Zusammensetzungen

Die Bochumer Forscher um Dipl.-Ing. Philipp Schütte setzen daher auf eine neue Methode: die Spark Plasma Consolidation. Funken sprühen dabei zwar nicht, aber Kern der Methode ist eine blitzartige Entladung von bis zu 80.000 Wattsekunden. Das zu verdichtende Pulver wird dabei zwischen zwei Stempel aus einer Kupferlegierung gepresst, die gleichzeitig die Kontakte für die Stromentladung darstellen. Da die gesamte Energie durch das Pulver geleitet wird, ist die Methode sehr effizient – im Gegensatz zum Ofen, wo viel Energie als Wärme verloren geht. Das fertig verdichtete Werkstück lässt sich nach der Entladung per Hand aus der Anlage nehmen. Was genau im Werkstoff bei der Entladung passiert, haben die Forscher untersucht: Die Partikelränder schmelzen, die Schmelze wird in die Zwischenräume gepresst und erstarrt dort. Für Auflösungsprozesse bleibt keine Zeit. Das erlaubt auch die Verwendung von Materialien, die sich bei herkömmlichen Herstellungsprozessen auflösen würden. Sogar Diamanten lassen sich mit der Methode einbinden.

Weitere Themen in RUBIN Werkstoff-Engineering

Im RUBIN Werkstoff-Engineering finden Sie außerdem folgen Themen: Widerstandsfähig gegen Rost und Reibung: Pumpenzentrum kümmert sich um das allgegenwärtige Stiefkind der Forschung; Dem Zufall auf die Sprünge helfen: Entwicklung neuer Werkstoffe durch Hochdurchsatzexperimente mit Materialbibliotheken; Die Sonne Wasser spalten lassen; Wenn Superlegierungen versetzt werden; Zerreißprobe: Wie Hitze die Mikrostruktur von Stahl durcheinanderbringt; Geflochtene Implantate; Bei extremer Kälte dem Magnetfeld widerstehen; Leichter abheben; Heißer ist besser: Kraftwerke umweltschonender machen; Wie eine lebende Haut: Neue Korrosionsschutzschichten sollen Defekte selbstständig heilen; … und wenn sich der Wasserstoff nicht nur im Tank befindet?: Ingenieure untersuchen Gefahren durch Wasserstoff in hochfesten Stählen; Vom Atom zum Werkstoff: Interdisziplinäre Materialsimulation zu leichten Elementen in Eisen und Stahl. RUBIN ist in der Stabsstelle Strategische PR und Markenbildung zum Preis von 5 Euro erhältlich und online unter http://www.rub.de/rubin

Weitere Informationen

Dipl.-Ing. Philipp Schütte, Institut für Werkstoffe der RUB, Lehrstuhl Werkstofftechnik (Prof. Dr.-Ing. Werner Theisen), Tel. 0234/32-25957, E-Mail: schuette@wtech.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.rub.de/rubin

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie