Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenanalyse weist Weg zu besseren Solarzellen, Supraleitern und Festplatten

14.04.2014

Eine neue Röntgenanalyse an DESYs hellen Forschungslichtquellen weist den Weg zu besseren Solarzellen, Supraleitern und Festplatten.

Die Arbeit, die in der aktuellen Ausgabe des Fachjournals "Nature Communications" vorgestellt wird, gibt neue Einblicke in die Phänomene an der Grenzfläche zweier Materialien, wo sich völlig neue Eigenschaften ausbilden können. Mit der Untersuchung hat das Team um Prof. Andrivo Rusydi von der National-Universität Singapur und Prof. Michael Rübhausen vom Hamburger Center for Free-Electron Laser Science (CFEL) ein lange unverstandenes Rätsel der Festkörperphysik gelöst. Das CFEL ist eine Kooperation von DESY, Universität Hamburg und Max-Planck-Gesellschaft. 


Ist die Lanthanaluminat-Schicht dünner als drei Elementarzellen, verteilen sich die Elektronen in Untereinheiten (l), ist sie mindestens vier Zellen dick, wandern Elektronen in die Grenzschicht (r).

Illustration: Michael Rübhausen, Universität Hamburg

"Grenzflächen sind zurzeit ein zentrales Thema in der Materialforschung", erläutert Rusydi. "Wenn zwei unterschiedliche Materialien zusammengebracht werden, können ganz neue Eigenschaften entstehen. So können beispielsweise zwei nicht-magnetische und elektrisch isolierende Materialien an ihrer Grenzfläche metallisch und magnetisch werden." Grund für diesen Charakterwechsel der Materialien ist die gebrochene Symmetrie an ihrer Grenzfläche, wie Rübhausen erklärt, der Professor an der Universität Hamburg ist. "Die beiden Materialien haben verschiedene Eigenschaften und Strukturen. Wenn man sie in Kontakt bringt, müssen sie sich miteinander arrangieren, und das führt zu neuen Eigenschaften."

Dieses Phänomen lässt sich beispielsweise ausnutzen, um kleinere Festplatten zu entwerfen. "Gewöhnlich steuern die Volumen-Eigenschaften des Materials die Eigenschaften von Festplatten, für eine weitere Miniaturisierung möchten wir ihre physikalischen Eigenschaften gerne über die Grenzflächenstruktur kontrollieren", sagt Rusydi. "Allerdings verstehen wir noch nicht vollständig, was an der Grenzfläche passiert." Als Beispiel hat die Gruppe die Grenzfläche der beiden Übergangsmetalloxide Strontiumtitanat (SrTiO3) und Lanthanaluminat (LaAlO3) untersucht. Die beiden Isolatoren bilden eine elektrisch leitende Grenzschicht. "Basierend auf Maxwells Theorie sollten wir allerdings eine zehnfach höhere Leitfähigkeit beobachten", betont Rusydi. "90 Prozent der Ladungsträger, der Elektronen, scheinen verschollen. Das war uns bislang ein völliges Rätsel."

Auf der Suche nach den "verschollenen" Elektronen haben die Wissenschaftler die Grenzregion der beiden Materialien mit DESYs heller Forschungslichtquelle DORIS III ausgeleuchtet und dafür Licht aus einem breiteren Ultraviolett-Energiebereich benutzt als jede Untersuchung zuvor. "Alle Elektronen in dem Material sind wie kleine Antennen", erläutert Rusydi. "Je nach ihrem eigenen energetischen Zustand sprechen sie auf elektromagnetische Strahlung bestimmter Wellenlängen an." Wird vom eingestrahlten Synchrotronlicht bei einer bestimmten Wellenlänge etwas absorbiert, verrät dies den Forschern den energetischen Zustand der korrespondierenden Elektronen und damit ihr Versteck im Kristallgitter.

Die Untersuchung zeigt, dass nur ein Teil der erwarteten Elektronen tatsächlich zur Grenzregion wandert, um eine leitende Schicht zu formen. Die meisten Elektronen verteilen sich in Untereinheiten des Lanthanaluminats um, wo sie bisherigen Techniken in früheren Untersuchungen verborgen blieben.

Außerdem beobachteten die Wissenschaftler, dass der Transfer von Elektronen aus dem Kristallgitter zur Grenzschicht von der Zahl der sogenannten Elementarzellen des Lanthanaluminats in dem untersuchten Kristall abhängt. Als Elementarzelle bezeichnen Festkörperphysiker die kleinste Einheit eines Kristalls, der sich damit als geordnete Aneinanderreihung vieler identischer Elementarzellen beschreiben lässt. Ist die Lanthanaluminat-Schicht dünner als drei Elementarzellen, verteilen sich sämtliche Elektronen neu innerhalb der Lanthanaluminat-Untereinheiten, kein Elektron wandert zur Grenzfläche mit dem Strontiumtitanat, die damit ein elektrischer Isolator bleibt.

Dies erklärt, warum Materialschichten in der Regel deutlich dicker als eine Elementarzelle sein müssen, damit sich Grenzflächen-Phänomene voll ausbilden. "Wenn nur ein Teil der Elektronen zur Grenzfläche wandert, ist ein größeres Volumen nötig, um die Brechung der Symmetrie an der Oberfläche zu kompensieren", erläutert Rusydi. Dank ihrer Arbeit können die Forscher das Verhalten dieser speziellen und anderer Grenzflächen nun besser verstehen.

"Im Prinzip kann unsere Untersuchungstechnik für jede Art Grenzfläche benutzt werden", betont Rübhausen. "Wir haben gerade erst angefangen, die grundlegenden Eigenschaften von Grenzflächen damit zu untersuchen." Weitere Untersuchungen müssen allerdings warten, bis die sogenannte Superlumi-Messstation, die für diese Arbeit benutzt wurde, von der inzwischen abgeschalteten Lichtquelle DORIS III an die DESY-Lichtquelle PETRA III transferiert worden ist. "Im Moment gibt es keine Anlage weltweit, die dieses messen kann", unterstreicht Rübhausen.

Mit einem besseren Verständnis der Grenzflächen lassen sich deren Eigenschaften besser steuern, erwarten die Forscher. "Wenn wir lernen, wie wir die Grenzflächen kontrollieren, können wir völlig neue Eigenschaften konstruieren", sagt Rübhausen.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
"Mechanisms of charge transfer and redistribution in LaAlO3/SrTiO3 revealed by high-energy optical conductivity"; T.C. Asmara et al.; Nature Communications (2014); DOI: 10.1038/ncomms4663

Wissenschaftliche Ansprechpartner
Prof. Michael Alexander Rübhausen, Universität Hamburg, +49 40 8998-6600, mruebhau@physnet.uni-hamburg.de
Prof. Andrivo Rusydi, National University of Singapore, phyandri@nus.edu.sg

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten