Ressourceneffiziente Lösungen für die Poduktion

Waben- und Gitterstrukturen aus der Natur werden in die technische Anwendung übertragen. © Fraunhofer IWU

Unternehmen und Industriebetriebe müssen einem ständigen Wettbewerbsdruck standhalten: Günstige Produkte aus Asien und anderen Gegenden drängen auf den Markt und drücken die Preise. Vielfach können die Betriebe nur dann mithalten, wenn auch ihre eigenen Produktpreise purzeln. Doch die Ausgangsstoffe für die Produkte, also Energie und Rohstoffe, werden langfristig teurer. Wollen Unternehmen weiterhin wettbewerbsfähig bleiben, heißt es daher, den Verbrauch von Ressourcen zu optimieren. Sprich: Mit weniger Material und Energie zum gleichen Ergebnis zu kommen. So erreichen die Betriebe nicht nur einen Kostenvorteil, sondern schonen zudem die Umwelt und punkten auch beim Thema Leichtbau.

Welche Möglichkeiten dafür bestehen, erforscht die Projektgruppe RMV des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik IWU am Standort Augsburg. »Die Optimierung der Ressourcen Energie, Material und Mensch sehen wir als entscheidenden Faktor künftiger Produktionsprozesse. Mit innovativen Lösungen schaffen wir einen Wettbewerbsvorsprung für unsere Partnerunternehmen und tragen somit entscheidend zu einer besseren Nachhaltigkeit bei«, betont der Leiter der Augsburger Projektgruppe, Prof. Dr. Gunther Reinhart. In zahlreichen Projekten unterstützen die Wissenschaftler große, kleine und mittelständische Unternehmen. Angekoppelt an das Fraunhofer IWU und in enger Zusammenarbeit mit dem Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb) der Technischen Universität München verknüpfen sie Fertigungstechnik, Verfahrenstechnik sowie Energie- und Ressourceneffizienz.

Material sparen mit Gitter- und Wabenstrukturen

In der Automobil- und der Luft- und Raumfahrtindustrie steht in punkto Ressourceneffizienz vor allem der Leichtbau im Vordergrund. Wie geschaffen dafür sind beispielsweise Gitterstrukturen, wie sie im Schwammgewebe eines Oberschenkelknochens vorkommen – denn sie sind extrem steif, fest und dabei sehr leicht. Was die Natur seit Jahrtausenden anwendet, steckt in den Industriehallen jedoch noch in den Anfängen. Zwar lassen sich Gitterstrukturen über additive Fertigungsverfahren wie das Laserstrahlschmelzen bereits wirtschaftlich herstellen: Dabei fährt ein Laser über ein Pulverbett, schmilzt die einzelnen Partikel mit seinem Strahl auf und verbindet sie auf diese Weise miteinander. Schicht für Schicht wächst so das gewünschte Bauteil heran – allerdings funktioniert das bislang nur bei regelmäßigen Strukturen. Ihr Manko: Werden die einzelnen Gitterbalken stark belastet, treten Biegespannungen auf. Die Fraunhofer-Forscher passten die Struktur nun an den Kraftfluss im Bauteil an – ebenso wie es im Knochen der Fall ist. Das Ergebnis: Die Spannungszustände lassen sich vermeiden, das Bauteil wird bei gleicher Festigkeit um 55 Prozent leichter.

Auch Wabenstrukturen übertragen die Wissenschaftler in die technische Anwendung. Sie setzen sie in einer Sandwichbauweise ein, wie sie in der Natur etwa in der Schädelkapselwandung einiger Vögel zu finden sind. Das Prinzip: Der leichte Wabenkern steckt zwischen festen, steifen Deckschichten. Dieser Materialverbund ist deutlich stabiler als die Summe der Einzellagen. Bislang konnte man in dieser Sandwichbauweise nur ebene oder einfach gekrümmte Strukturen herstellen. Künftig haben Designer hier weit mehr Freiheiten: Durch den Einsatz der additiven Fertigung zeigen die Forscher, dass man mit diesem Verfahren beliebig geformte Bauteile produzieren kann.

FOREnergy – die energieflexible Fabrik

Im Gegensatz zu Materialien und Rohstoffen wurde Energie im produzierenden Gewerbe bislang kaum als begrenzte Ressource wahrgenommen. Das dürfte sich künftig ändern: Denn bis zum Jahr 2050 sollen mindestens 80 Prozent des deutschen Strombedarfs aus erneuerbaren Energien gedeckt werden. Sonne und Wind liefern ihre Energie allerdings nicht in gleichbleibender Stärke. Zwar sollen große Stromspeicher Stromschwankungen abfedern. Doch auch die Verbraucher müssen ihren Teil leisten und ihre Nachfrage flexibler an das Stromangebot anpassen.

Bei der Waschmaschine daheim ist das keine allzu große Sache – sie kann meist warten, bis der Strom in Massen fließt und dementsprechend kostengünstig ist. Nur wie können produzierende Unternehmen ihren Energieverbrauch flexibler gestalten? Diese Frage wollen Mitarbeiter von fünf Hochschulen und Forschungseinrichtungen sowie von 28 KMUs im Netzwerk FOREnergy unter der Leitung der Projektgruppe RMV des IWU gemeinsam beantworten. Um das Ziel der energieflexiblen Fabrik zu erreichen, schaffen die Forscher zunächst einmal Transparenz über die Energieverbräuche: Wie viel Energie verbraucht die Fabrik in welchen Zeiträumen und auf welchen Ebenen? Die aus diesem Lastprofil erhaltenen Daten verknüpfen die Wissenschaftler in einem Energiemodell. Sie erforschen die entsprechenden Anlagen und Speichermedien ebenso wie Planungs- und Steuerungsansätze. Damit die Produktion wirtschaftlich arbeitet, entwickeln die Experten eine Bewertungsmethode: Sie schätzt die Konsequenzen der Bedarfsanpassung ab und gleicht sie mit den monetären Vorteilen ab.

Veranschaulicht werden die Ideen und Möglichkeiten einer energieflexiblen Fabrik mit einem interaktiven, virtuellen Demonstrator. Für die dort abgebildete Modellfabrik lassen sich neben Wetterbedingungen auch unterschiedliche Jahresszenarien in Simulationen auswählen, um den Effekt des steigenden Anteils erneuerbarer Energien auf die Strompreise zu verdeutlichen.

http://www.fraunhofer.de/de/presse/presseinformationen/2015/mai/ressourceneffizi…

Media Contact

Tobias Steinhäußer Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer