Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rekord in der Hochdruckforschung erzeugt bisher unbekannte Materiezustände

25.08.2015

Bei einem Kompressionsdruck von mehr als 770 Gigapascal – dem höchsten Druck, der bisher im Labor erzeugt wurde – ändert sich das Elektronenverhalten in Osmium, dem Element mit der höchsten bekannten Massendichte, auf eine äußerst ungewöhnliche Weise. Kernelektronen, die normalerweise passiv sind, treten miteinander in Wechselwirkung. Darüber berichtet eine internationale Forschungsgruppe unter der Leitung von Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky an der Universität Bayreuth im Forschungsmagazin „Nature“. Der jetzt erstmals beobachtete Effekt lässt vermuten, dass unter extremen Drücken weitere, bisher unbekannte Materiezustände entstehen könnten.

Die neuen Erkenntnisse, an denen in Deutschland auch Wissenschaftler am Deutschen Elektronen-Synchrotron (DESY) in Hamburg mitgewirkt haben, können das Verständnis von Strukturen und Prozessen in extrem komprimierter Materie weiter voranbringen und das Design hochbelastbarer Funktionsmaterialien fördern. Sie können zudem die Astrophysik bei der Modellierung des Inneren von großen Planeten und Sternen unterstützen.


Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky in Bayreuth an einem Mikromanipulator, mit dem Proben für die Untersuchung in zweistufigen Diamantstempelzellen vorbereitet werden.

Foto: Pressestelle Universität Bayreuth

Osmium unter Hochdruck

Osmium ist ein Platinmetall, das in der Erdkruste sehr selten vorkommt und sich durch eine außerordentliche Härte auszeichnet. In keinem anderen chemischen Element ist das Verhältnis von Masse zu Volumen derart hoch. Und kein anderes Element ist so widerstandsfähig gegenüber Kompressionsdrücken.

Eine internationale Forschungsgruppe aus Deutschland, Frankreich, Schweden, den Niederlanden und den USA hat Eigenschaften und Strukturen dieses ungewöhnlichen Metalls jetzt erstmals bei stetig steigenden Drücken analysiert. Zweistufige Diamantstempelzellen machten es möglich, den Druck auf eine Rekordhöhe von mehr als 770 Gigapascal zu steigern. In keinem anderen Labor der Welt wurde bisher bei Raumtemperatur ein derart hoher Kompressionsdruck erzielt – mehr als doppelt so hoch wie der Druck, der im inneren Erdkern herrscht.

Prof. Dubrovinskaia und Prof. Dubrovinsky in Bayreuth haben die Forschungsarbeiten koordiniert. Erst vor wenigen Jahren wurden von ihnen die leistungsstarken Stempelzellen entwickelt. Diese enthalten zwei Stempel aus Nanodiamanten, deren halbrunde Köpfe einander exakt gegenüber liegen. Dazwischen wird die Materialprobe platziert. Die Stempel haben jeweils einen Durchmesser von rund 10 bis 20 Mikrometern, also zwischen 0,01 bis 0,02 Millimetern. Aufgrund der winzigen Korngröße der Nanodiamanten, die unterhalb von 50 Nanometern liegt, sind sie extrem belastbar.

Ein bisher unbekannter Effekt:
Extremer Druck beeinflusst das Verhalten von Elektronen

Während der enormen Steigerung des Kompressionsdrucks blieb die hexagonale Grundstruktur des Osmiums durchweg erhalten. Bei rund 150 Gigapascal aber trat erstmals eine Anomalie im Aufbau der kristallinen Elementarzellen auf. Diese Strukturänderung ließ sich mit bekannten physikalischen Vorgängen erklären. Doch eine weitere Anomalie, die in den Elementarzellen bei etwa 440 Gigapascal beobachtet werden konnte, überraschte die Forscher. „Hier führen konventionelle Erklärungen nicht weiter. Vielmehr sieht es so aus, als ob die Strukturänderung durch bisher unbekannte Verhaltensweisen der Kernelektronen verursacht wird“, erklärt Prof. Dubrovinskaia.

Kernelektronen befinden sich in unmittelbarer Nähe der Atomkerne und sind an chemischen Bindungen nicht beteiligt. Dies unterscheidet sie von den sogenannten Valenzelektronen, die von den Atomkernen deutlich weiter entfernt sind. Valenzelektronen lösen sich von der räumlichen Zugehörigkeit zu ihren jeweiligen Atomen und bilden ‚elektronische Bänder‘, so dass chemische Bindungen zwischen verschiedenen Atomen entstehen. Unter den hohen, stetig ansteigenden Kompressionsdrücken bleiben die Kernelektronen aber nicht länger in ihren ursprünglichen, klar unterscheidbaren Zuständen. Sie beginnen miteinander zu interagieren – und zwar, wie theoretische Berechnungen zeigen, bei 392 Gigaspascal. „Die Strukturänderungen des Osmiums, die wir bei rund 440 Gigapascal im Experiment beobachtet haben, lassen sich daher mit Interaktionen der Kernelektronen gut erklären“, so Prof. Dubrovinskaia.

Eine vielversprechende Richtung der Materialforschung

Die Autoren des „Nature“-Beitrags schlagen für die sehr ungewöhnlichen Interaktionen der Kernelektronen, deren Zustände dabei ineinander übergehen, die Bezeichnung „Core Level Crossing Transition“ vor. „Hier eröffnet sich ein vielversprechendes Gebiet für weitere Untersuchungen“, meint Prof. Dubrovinsky. „Denn wenn extrem hohe Drücke imstande sind, sogar in einem innerlich sehr stabilen Metall wie Osmium ein neuartiges Elektronenverhalten auszulösen und so die Materialstrukturen zu ändern, lassen sich möglicherweise noch andere bisher unbekannte Materiezustände erzeugen. Nicht zuletzt deshalb ist die Hochdruckforschung, wie wir sie hier an der Universität Bayreuth betreiben, ein vielversprechender Forschungszweig“, fügt der Bayreuther Wissenschaftler hinzu. Er hält es für durchaus möglich, dass die dabei gewonnenen Erkenntnisse bei der Entwicklung neuer, für Extrembedingungen geeigneter Funktionsmaterialien genutzt werden können.

Die neuen Forschungsergebnisse belegen die Bedeutung internationaler Kooperationen in der Materialwissenschaft. Denn an den Strukturuntersuchungen der Osmium-Proben waren drei der weltweit leistungsstärksten Teilchenbeschleuniger beteiligt: das Deutsche Elektronen-Synchrotron (DESY) in Hamburg, die European Synchrotron Radiation Facility (ESRF) in Grenoble und die Advanced Photon Source (APS) am Argonne National Laboratory in Chicago.

Veröffentlichung:

Leonid Dubrovinsky, Natalia Dubrovinskaia, et al., The Most Incompressible Metal Osmium at Static Pressures above 750 GPa,
Nature 2015, 24 August 2015 (Advance Online Publication), DOI: 10.1038/nature14681

Kontakt (vorzugsweise per E-Mail):

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Leonid.Dubrovinsky@uni-bayreuth.de
Telefon: +49 (0)921-55 3736 oder 3707

Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Natalia.Dubrovinskaia@uni-bayreuth.de
Telefon: +49 (0)921-55 3880 oder 3881

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten