Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reizbare Fasern

02.08.2017

Elektroaktive Materialien, die beispielsweise in der regenerativen Medizin zum Einsatz kommen, stehen im Mittelpunkt eines neuen Forschungsprojekts an der Universität Würzburg. Die Volkswagenstiftung finanziert das Vorhaben mit gut 700.000 Euro.

Eine hauchdünne Faser, die elektrische Leitfähigkeit, Elektroaktivität und Biokompatibilität kombiniert: So soll das Produkt aussehen, an dem Wissenschaftler der Universität und des Universitätsklinikums Würzburg sowie des Imperial College London in den kommenden drei Jahren arbeiten.


Die Beteiligten aus Würzburg: Robert Luxenhofer (l.) und Paul Dalton.

Foto: Christoph Böhm

Die entsprechenden 3D-gedruckten, elektroaktiven und biokompatiblen Polymermikrofasergerüste sollen beispielsweise in der regenerativen Medizin zum Einsatz kommen. Aber auch andere Anwendungen, beispielsweise in der Robotik und Sensorik, sind denkbar.

Experten aus Würzburg und London

Sprecher des Forschungsverbunds ist Paul Dalton, Professor für Biofabrikation am Lehrstuhl für Funktionswerkstoffe in der Medizin und der Zahnheilkunde des Würzburger Universitätsklinikums. Dalton ist der international führende Pionier auf dem Gebiet des sogenannten Melt Electrospinning Writings (MEW) – einer Technik, bei der Polymere in einem elektrischen Feld zu extrem dünnen Fäden gesponnen und gleichzeitig zu feinen Gittern und Gerüsten angeordnet werden.

Zweiter Beteiligter ist Robert Luxenhofer, Professor für polymere Funktionswerkstoffe am Lehrstuhl für Chemische Technologie der Materialsynthese der Universität Würzburg. Er ist Experte für biokompatible Beschichtungen und weiß, wie künstliches Material aussehen muss, damit sich Zellen auf ihm wohlfühlen.

Die Dritte im Bund ist Dr. Rylie Green, Wissenschaftlerin am Department of Bioengineering der Faculty of Engineering des Imperial College London. Ihre Spezialität ist die Herstellung von elektrisch leitfähigen Polymeren und Biomaterialien.

An der Schnittstelle von Makro- und Nano-Welt

Mit rund 700.000 Euro finanziert die Volkswagen-Stiftung das Forschungsprojekt in den kommenden drei Jahren. Ziel der Initiative ist die „Verknüpfung molekularer oder nanoskaliger Einheiten zu komplexeren Funktionssystemen mit makroskopisch nutzbaren Effekten“, wie die Stiftung schreibt.

Zwar entwickeln Wissenschaftler seit etlichen Jahren schon neue Materialien und Komponenten mit herausragenden Eigenschaften im Nanometerbereich. „Bislang sind dies vor allem Einzelkomponenten, während größere Anwendungen basierend auf diesen Bausteinen immer noch die Ausnahme bilden“, so die Stiftung. Mit ihrer Förderinitiative will sie dazu beitragen, „die fehlende Schnittstelle zwischen der makroskopischen und der Nano-Welt zu schaffen“.

„Unser Ziel ist es, wenige Mikrometer große Objekte zu erzeugen, die sich bewegen können, wenn sie elektrisch stimuliert werden“, beschreibt Paul Dalton das Vorhaben des neuen Forschungsverbunds. Erforderlich dafür sei die Kombination von leitfähigen Polymeren, aktuellen materialwissenschaftlichen Erkenntnissen und einer fortgeschrittenen 3D-Drucktechnik. Nur durch geschickte Kombination dieser Techniken und Materialien ließe sich diese Herausforderung bewältigen.

Muskelfasern aus dem Labor

Eine Faser, die sich zusammenziehen und wieder ausdehnen kann, wenn sie elektrisch stimuliert wird: Wer dabei an einen künstlichen Muskel denkt, liegt nicht völlig falsch. „Solch ein Ziel liegt allerdings noch in einiger Ferne“, sagt Robert Luxenhofer. Trotzdem soll die Entwicklung der Forscher aus Würzburg und London in absehbarer Zeit in der regenerativen Medizin zum Einsatz kommen.

„Damit sich Zellen im Labor zu speziellen Geweben oder Organen entwickeln, benötigen sie unter anderem eine Umgebung, die der natürlichen möglichst ähnlich ist“, sagt Robert Luxenhofer. Damit aus Muskelzellen Muskelstränge werden, müssen demnach regelmäßig Kräfte auf die Zellen einwirken, die sie mal dehnen, mal stauchen. Oder, anders formuliert: Sie brauchen dauerhaft mechanischen Stress. Das könnten in Zukunft die Gerüste leisten, an denen die drei Wissenschaftler nun arbeiten.

Weitere Einsatzgebiete

Weitere Einsatzgebiete solch elektroaktiver Gewebe sind mikroskopische Sensoren. Dort können sie bei minimalstem Platzaufwand, beispielsweise eingebettet in künstliche Haut, dafür sorgen, dass Roboter in Zukunft besser fühlen können.

„Coaxial 3D printing of actuating electroactive scaffolds for muscle regeneration“: So lautet der genaue Titel des neuen Forschungsprojekts. Paul Dalton ist sich ziemlich sicher, dass am Ende ein „radikal neues funktionales makroskopisches System“ stehen wird, dessen Einsatzmöglichkeiten heute noch gar nicht überschaubar sind.

Kontakt

Prof. Dr. Paul Dalton, T: (0931) 201-74081, paul.dalton@fmz.uni-wuerzburg.de

Prof. Dr. Robert Luxenhofer, T: (0931) 31-89930, robert.luxenhofer@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik