Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reibungsuntersuchungen für den problemlosen Betrieb von Magnetresonanztomographen

11.07.2013
Die wenigsten Patienten in einem Krankenhaus werden sich Gedanken machen, wie ein Magnetresonanztomograph (MRT) arbeitet. Hauptsache das Gerät funktioniert und liefert sichere Ergebnisse.

Im Innern des Tomographen werden aber sehr starke Magnetfelder erzeugt. Die damit verbundenen Kräfte führen beim Hochfahren des Systems zu Bewegungen und damit auch zu Reibung, die durchaus Probleme bereiten kann. An der BAM Bundesanstalt für Materialforschung und -prüfung gibt es ein ganzes Fachgebiet, das sich mit Tribologie, also mit Reibung, Verschleiß und Schmierung beschäftigt.

Die Reibungsexperten der BAM wurden deshalb von der Industrie beauftragt, daran zu forschen, wie man diese durch Reibung verursachten Probleme vermindern kann und zwar bei sehr tiefen Temperaturen.

In Zusammenarbeit mit der Firma „Siemens Magnet Technology“, welche solche MRT entwickelt und herstellt, und dem Tieftemperaturlabor der FU Berlin haben die Tribologen verschiedene Materialkombinationen ausprobiert und in ihren speziellen Apparaturen auf ihre Reibungseigenschaften untersucht. Bei den Apparaturen handelt es sich um weltweit einzigartige Tieftemperatur-Tribometer. Die Ergebnisse zeigen, dass die beim ersten Hochfahren der Magnetspule, dem so genannten Training, auftretenden reibungsbedingten Probleme durch optimierte Materialkombinationen reduziert, wenn nicht sogar beseitigt werden können. Warum das so wichtig ist, und welche Folgen und Kosten plötzlich auftretende Reibung haben kann, dafür muss man ein wenig ausholen und einen Blick in die Technik eines MRT werfen.

Die Magnetresonanztomographie ist ein medizinisches Routine-Verfahren, das Mediziner in die Lage versetzt, innere Strukturen detailreich sichtbar zu machen, um so zwischen verschiedenen Geweben innerhalb des Körpers unterscheiden zu können. Der Umgang mit diesen Geräten in Krankenhäusern ist so allgegenwärtig, dass man leicht die Komplexität und anspruchsvolle Technologie unter der Hülle der „Röhre“ aus den Augen verliert. So kann zum Beispiel das für das Verfahren notwendige Magnetfeld bis zu 30.000-mal stärker als das der Erde sein.

Um so ein kräftiges und homogenes Magnetfeld erzeugen zu können, braucht man spezielle Magnete. Zum Einsatz kommen supraleitende Materialien aus Niob-Titan. Dies sind Stoffe, die keinen elektrischen Widerstand haben. Dadurch wird es möglich, dass in den supraleitenden Spulen sehr hohe Ströme ohne Widerstand und damit ohne Wärmeentwicklung fließen.

Das Problem ist, dass solche Materialien stark abgekühlt werden müssen, damit sie die supraleitenden Eigenschaften erhalten. Dies erreicht man durch Kühlung mit flüssigem Helium, wodurch die Magnete bei einer Temperatur von nur +4 Kelvin über dem absoluten Nullpunkt von -273°C (oder 0°K) betrieben werden können. Dabei ändern sich aber auch andere Materialeigenschaften, wie zum Beispiel die Wärmekapazität, mit der Folge, dass „bereits bei kleinsten Bewegungen und mechanischen Störungen so viel Reibungswärme entsteht, dass die kritische Temperatur des Supraleiters überschritten wird“, beschreibt der BAM-Physiker Thomas Gradt das Problem. Und wenn man das System – also das Magnetfeld hochfährt – bewirken die entstehenden elektromagnetischen Kräfte eine unvermeidbare Bewegung zwischen der Spule und ihrer Stützstruktur. Durch die Überschreitung einer bestimmten (der kritischen) Temperatur entsteht dann eine normalleitende Zone mit einem elektrischen Widerstand. Die Folge ist Wärme – ähnlich wie bei einer Glühlampe – das System heizt sich weiter auf. Die Wissenschaftler nennen dies „Quench“. „Dies hat ein schlagartiges Verdampfen des Kältemittels Flüssighelium zur Folge, welches nicht nur extrem teuer, sondern auch zunehmend schwer zu beziehen ist“, erläutert Gradt.

Um diese Ursache für einen Quench beim ersten Hochfahren einer supraleitenden Magnetspule weitgehend zu beseitigen, ist es notwendig, das Reibverhalten der beteiligten Werkstoffe zu optimieren. Diesem Ziel sind die Tribologen der BAM mit ihren Untersuchungen ein ganzes Stück näher gekommen.

Kontakt:
Dr. rer. nat. Thomas Gradt
Abteilung 6 Materialschutz und Oberflächentechnik
E-Mail: thomas.gradt@bam.de

Dr. Ulrike Rockland | idw
Weitere Informationen:
http://www.bam.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Kobold in der Zange

17.01.2018 | Biowissenschaften Chemie

Mit Elektrizität Magnetismus umschalten

17.01.2018 | Physik Astronomie

Maßgeschneiderte Eigenschaften erlauben Einblicke in Quantenpunkte

17.01.2018 | Physik Astronomie