Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realitätsgetreues Modell einer Batterieelektrode am Rechner

03.06.2015

Ein Forschungsteam hat einen neuen Ansatz entwickelt, um Batterie-Elektroden am Computer noch realistischer zu modellieren. Sie kombinierten dafür Synchrotron-Tomographie-Aufnahmen, die die dreidimensionale Struktur mikrometergenau abbilden, mit Elektronenmikroskopie-Aufnahmen, die in einem kleinen Ausschnitt sogar Nanostrukturen auflösen. Mit einem mathematischen Modell konnten sie diese Nanostrukturen auf Bereiche außerhalb des Ausschnitts übertragen. Dadurch lassen sich Eigenschaften und Prozesse in Batterie-Elektroden nun höchst realistisch simulieren.

Batterien müssen noch leichter, leistungsfähiger und günstiger werden, um eines Tages in großem Maßstab Autos anzutreiben oder Strom aus Wind und Sonne zu speichern. Eine Möglichkeit, die Entwicklung zu beschleunigen, ist das „Virtual Materials Design“:


Mit Synchrotron-Tomographie an BESSY II wurde die 3D-Struktur der Batterie-Elektrode mikrometergenau ermittelt.

Bild: L. Zielke/S. Thiele


Eine Rasterelektronenmikroskopie-Aufnahme von kleinen Bereichen der Elektrode zeigte Details auf Nanometer-Skala.

Bild: L. Zielke/S. Thiele

Mit dem passenden Computerprogramm lassen sich in ein paar Klicks die unterschiedlichsten Materialstrukturen virtuell herstellen und austesten, so die Idee. Das Problem liegt allerdings in der fehlenden Realitätsnähe. „Das Material, das man am Computer erfindet, muss ja letztendlich auch in der Realität herstellbar sein; das geht aber nur, wenn es auf realen Strukturparametern beruht“, erklärt HZB-Forscher Dr. Ingo Manke.

Daten aus zwei bildgebenden Verfahren mit mathematischem Modell kombiniert

Um Materialsysteme für Batterie-Elektroden auf Basis realer Strukturparameter im Computer zu modellieren, haben Manke und sein Kollege Dr. André Hilger vom HZB-Institut für Angewandte Materialforschung nun zusammen mit einem Team der Brigham Young University (USA) und der Universität Freiburg einen neuen Ansatz entwickelt. Sie kombinierten dafür zwei verschiedene tomographische Verfahren zu einem sogenannten multiskaligen Ansatz.

Zunächst analysierten sie eine moderne LiCoO2-Batterie-Elektrode mit Synchrotron-Tomographie an BESSY II, so dass sie Informationen zur dreidimensionalen Struktur auf der Mikrometer-Skala erhielten. Zusätzlich erfassten sie mit einem Rasterelektronenmikroskop mit fokussiertem Ionenstrahl (SEM/FIB-Tomographie) die noch tausendmal feinere Nano-Struktur, allerdings nur in einem sehr kleinen Ausschnitt des Materials. Mit einem mathematischen Modell, entwickelt von Prof. Dr. Dean R. Wheeler (Brigham Young Universität), gelang es, diese Informationen über die Nanostruktur auf die viel größere Struktur aus dem Synchrotron-Tomogramm zu übertragen.

Virtuelles Materialdesign am Rechner

„Das kann man sich in etwa wie bei einer Tapete vorstellen, deren feine Struktur sich immer wiederholt und so die gesamte Wand bedeckt. Nur dass sich die Struktur in diesem Fall nicht wiederholt, sondern immer wieder anders berechnet wird“, erklärt Manke. Der neue Ansatz ermöglicht es, Strukturen, die in echten Batterien vorkommen, sehr realitätsgetreu in ein Computermodell zu überführen, so dass sich wichtige Prozesse wie die Strom-Verteilung oder der Ionen-Transport virtuell untersuchen lassen. Im nächsten Schritt sollen diese modellierten Strukturen nun schrittweise verändert werden, um etwa die Strom-Verteilungen oder den Ionen-Transport zu verbessern. „Letztlich soll die Struktur, die wir am Computer optimiert haben, auch im Labor hergestellt werden können, dann werden wir testen, wie gut das Verfahren wirklich funktioniert“, sagt Manke.

Die Ergebnisse dieser Studie sind in der renommierten Zeitschrift Advanced Energy Materials publiziert worden [1], die mit einem Impact-Factor von 14.4 zu den am häufigsten zitierten Journalen auf diesem Gebiet gehört. Die Arbeiten setzten eine vorangegangene Studie der Arbeitsgruppen fort, die im letzten Jahr in derselben Zeitschrift veröffentlich wurden [2].

Vollständige Referenzen:

[1] L. Zielke, T. Hutzenlaub, D. R. Wheeler, C.-W. Chao, I. Manke, A. Hilger, N. Paust, R. Zengerle, S. Thiele, Three-phase multiscale modeling of a LiCoO2 cathode – Combining the advantages of FIB-SEM imaging and X-ray tomography, Advanced Energy Materials 5, 5, p. 1401612 (2015)
[2] L. Zielke, T. Hutzenlaub, D. R. Wheeler, I. Manke, T. Arlt, N. Paust, R. Zengerle, S. Thiele, A Synthesis of X-ray Tomography and Carbon Binder Modeling - Reconstructing the Three Phases of LiCoO2 Li-ion Battery Cathodes, Advanced Energy Materials 4, 8, p. 1301617 (2014)

Ansprechpartner:
Dr. Ingo Manke
manke@helmholtz-berlin.de

Dr. André Hilger
hilger@helmholtz-berlin.de

Pressekontakt:
Dr. Antonia Rötger
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14221&sprache=de&ty...

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie