Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

07.12.2017

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige Flugzeuge, energieeffiziente Autos und sicherere Industrieanlagen. Wie die bemerkenswerten Eigenschaften der Nanoteilchen im Detail zustande kommen, war bislang noch nicht genügend verstanden.


Modell von nanoporösem Gold, zigtausendfach vergrößert und im 3-D-Drucker hergestellt. Gut zu erkennen: Das schwammartige Netzwerk der Nanodrähte.

HZG/Rasmus Lippels.

Forscher des Helmholtz-Zentrums Geesthacht (HZG) und der Technischen Universität Hamburg (TUHH) konnten nun dank neuartigen experimentellen Herangehensweisen herausfinden, was die Winzlinge so fest macht. Ihre Resultate wurden in zwei renommierten Fachzeitschriften veröffentlicht – in „Nano Letters“ sowie aktuell in „Nature Communications“. Die Ergebnisse könnten helfen, künftige Leichtbau-Materialien gezielter zu entwickeln.

Die Metallteilchen, mit denen sich die Forscher beschäftigen, sind extrem klein: Ihr Durchmesser beträgt gerade mal zwanzig Nanometer (millionstel Millimeter). Die Winzlinge zeigen faszinierende Eigenschaften. Unter anderem besitzen sie eine enorme Festigkeit. „Im Prinzip können diese Nanoteilchen tausendmal fester sein als gewöhnliche, zum Beispiel millimetergroße Metalle“, sagt Projektleiter Prof. Jörg Weißmüller.

Der Wissenschaftler leitet das Institut für Werkstoffphysik und Werkstofftechnologie an der TUHH sowie die Arbeitsgruppe "Hybride Materialsysteme" am Institut für Werkstoffforschung des HZG. „Das macht sie für künftige Anwendungen interessant.“ Aus solchen High-Tech-Materialien könnten sich künftig zum Beispiel leichtere und damit energieeffizientere Fahrzeuge bauen lassen.

Wie sich die Nanoteilchen im Detail verhalten, weiß die Fachwelt noch nicht sehr genau. Die meisten Erkenntnisse stammen aus Computersimulationen: Hierbei setzen die Experten Dutzende Atome zu virtuellen Metallklümpchen zusammen, mit denen sie in Supercomputern dann regelrechte Versuche durchführen. Zwar liefern diese Computerexperimente spannende und plausible Resultate.

Experimentelle Überprüfungen aber stehen zumeist noch aus. Der Grund: Es ist überaus schwierig, die mechanischen Eigenschaften von Nanoteilchen zu untersuchen. Die klassischen Prüfmaschinen der Werkstoffforschung sind dafür nicht geeignet – wuchtige Pressen mit oberschenkeldicken Streben.

Weißmüller und seinen Kollegen ist es gelungen, einen raffinierten Versuchsaufbau zu entwickeln – ein mechanisches Prüfverfahren für Nanoteilchen. Der Trick: Sie verknüpfen Abermilliarden von Gold-Nanoteilchen zu einem porösen, schwammartigen Netzwerk, bestehend zu einem Viertel aus Metall und zu drei Vierteln aus Luft. Aus diesem nanoporösen Gold lassen sich millimetergroße Probenzylinder fertigen – groß genug, um sie mit einer Prüfmaschine zu testen: Von oben drückt ein Stempel auf den Zylinder.

Dabei werden sämtliche Nanoteilchen gleichzeitig verformt, woraus die Experten anschließend auf das Verhalten der einzelnen Teilchen schließen können. Außerdem ist die Probe in eine als Elektrolyt fungierende Säurelösung getaucht, und es lässt sich eine elektrische Spannung anlegen. Dadurch können die Forscher die für den Nanokosmos so wichtigen Oberflächenphänomene gezielt beeinflussen und zum Teil sogar wiederholt an- und abschalten.

„In einem Fall konnten wir mit unseren Experimenten erstmals die Resultate der Computersimulationen bestätigen“, sagt Weißmüller. „In einem anderen Fall konnten wir zeigen, dass es ganz anders ist als gedacht.“ In ihrem Artikel in „Nano Letters“ konnten die Wissenschaftler nachweisen, dass wie vermutet die Prozesse an der Oberfläche des Nanoteilchens entscheidend zur enormen Festigkeit beitragen.

Der Grund: Bei einem großen, makroskopischen Körper stecken die allermeisten Atome im Inneren des Kristalls, nur ein winziger Bruchteil befindet sich an der Oberfläche. Bei einem Nanoteilchen dagegen sitzt ein relativ großer Teil der Atome an der Oberfläche. Dadurch werden Oberflächeneffekte bestimmend für die mechanischen Eigenschaften. Ebendies konnten die HZG-Wissenschaftler nun in ihrem Versuch zeigen, indem sie bestimmte Oberflächeneffekte mithilfe experimenteller Tricks abschwächen und sogar abschalten konnten.

In ihrer aktuellen Veröffentlichung in „Nature Communications“ gelang es den Fachleuten, die Art der Oberflächeneffekte näher zu beleuchten und den Einfluss zweier verschiedener Phänomene zu bestimmen. „Hierbei erlebten wir eine Überraschung“, sagt Weißmüllers Kollegin Dr. Nadiia Mameka. „Unsere Ergebnisse haben die Aussagen der Computerexperimente widerlegt.“ Demnach ist es nicht wie angenommen die zwischen den Oberflächenatomen wirkende Kraft, die die mechanischen Eigenschaften der Nanoteilchen bestimmt. „Stattdessen dürfte die in der Oberfläche steckende Energie für die Festigkeit verantwortlich sein“, erklärt Mameka. „Das ist neu und völlig unerwartet.“

Künftig könnten solche Erkenntnisse helfen, neuartige Materialien auf Nanobasis zu entwickeln – hochinteressant etwa für den Leichtbau, aber auch für Werkstoffe mit eingebauten Sensoreigenschaften. „Indem wir die grundlegenden Eigenschaften dieser Nanoteilchen besser verstehen“ betont Jörg Weißmüller, „können wir künftige Werkstoffe gezielter entwickeln.“

Die Veröffentlichungen:

Nature Communications: DOI: 10.1038/s41467-017-01434-2.

Nano Letters,
DOI:10.1021/acs.nanolett.7b02950 Nano Lett. 2017, 17, 6258 − 6266

Weitere Informationen:

http://www.nature.com/ncomms Veröffentlichung bei Nature Communications
http://pubsdc3.acs.org/doi/pdf/10.1021/acs.nanolett.7b02950 Nano Letters

Dr. Torsten Fischer | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorhersage von Kristallisationsprozessen soll bessere Kunststoff-Bauteile möglich machen
20.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Heiratsschwindel unter Oxiden
20.06.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics