Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

07.12.2017

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige Flugzeuge, energieeffiziente Autos und sicherere Industrieanlagen. Wie die bemerkenswerten Eigenschaften der Nanoteilchen im Detail zustande kommen, war bislang noch nicht genügend verstanden.


Modell von nanoporösem Gold, zigtausendfach vergrößert und im 3-D-Drucker hergestellt. Gut zu erkennen: Das schwammartige Netzwerk der Nanodrähte.

HZG/Rasmus Lippels.

Forscher des Helmholtz-Zentrums Geesthacht (HZG) und der Technischen Universität Hamburg (TUHH) konnten nun dank neuartigen experimentellen Herangehensweisen herausfinden, was die Winzlinge so fest macht. Ihre Resultate wurden in zwei renommierten Fachzeitschriften veröffentlicht – in „Nano Letters“ sowie aktuell in „Nature Communications“. Die Ergebnisse könnten helfen, künftige Leichtbau-Materialien gezielter zu entwickeln.

Die Metallteilchen, mit denen sich die Forscher beschäftigen, sind extrem klein: Ihr Durchmesser beträgt gerade mal zwanzig Nanometer (millionstel Millimeter). Die Winzlinge zeigen faszinierende Eigenschaften. Unter anderem besitzen sie eine enorme Festigkeit. „Im Prinzip können diese Nanoteilchen tausendmal fester sein als gewöhnliche, zum Beispiel millimetergroße Metalle“, sagt Projektleiter Prof. Jörg Weißmüller.

Der Wissenschaftler leitet das Institut für Werkstoffphysik und Werkstofftechnologie an der TUHH sowie die Arbeitsgruppe "Hybride Materialsysteme" am Institut für Werkstoffforschung des HZG. „Das macht sie für künftige Anwendungen interessant.“ Aus solchen High-Tech-Materialien könnten sich künftig zum Beispiel leichtere und damit energieeffizientere Fahrzeuge bauen lassen.

Wie sich die Nanoteilchen im Detail verhalten, weiß die Fachwelt noch nicht sehr genau. Die meisten Erkenntnisse stammen aus Computersimulationen: Hierbei setzen die Experten Dutzende Atome zu virtuellen Metallklümpchen zusammen, mit denen sie in Supercomputern dann regelrechte Versuche durchführen. Zwar liefern diese Computerexperimente spannende und plausible Resultate.

Experimentelle Überprüfungen aber stehen zumeist noch aus. Der Grund: Es ist überaus schwierig, die mechanischen Eigenschaften von Nanoteilchen zu untersuchen. Die klassischen Prüfmaschinen der Werkstoffforschung sind dafür nicht geeignet – wuchtige Pressen mit oberschenkeldicken Streben.

Weißmüller und seinen Kollegen ist es gelungen, einen raffinierten Versuchsaufbau zu entwickeln – ein mechanisches Prüfverfahren für Nanoteilchen. Der Trick: Sie verknüpfen Abermilliarden von Gold-Nanoteilchen zu einem porösen, schwammartigen Netzwerk, bestehend zu einem Viertel aus Metall und zu drei Vierteln aus Luft. Aus diesem nanoporösen Gold lassen sich millimetergroße Probenzylinder fertigen – groß genug, um sie mit einer Prüfmaschine zu testen: Von oben drückt ein Stempel auf den Zylinder.

Dabei werden sämtliche Nanoteilchen gleichzeitig verformt, woraus die Experten anschließend auf das Verhalten der einzelnen Teilchen schließen können. Außerdem ist die Probe in eine als Elektrolyt fungierende Säurelösung getaucht, und es lässt sich eine elektrische Spannung anlegen. Dadurch können die Forscher die für den Nanokosmos so wichtigen Oberflächenphänomene gezielt beeinflussen und zum Teil sogar wiederholt an- und abschalten.

„In einem Fall konnten wir mit unseren Experimenten erstmals die Resultate der Computersimulationen bestätigen“, sagt Weißmüller. „In einem anderen Fall konnten wir zeigen, dass es ganz anders ist als gedacht.“ In ihrem Artikel in „Nano Letters“ konnten die Wissenschaftler nachweisen, dass wie vermutet die Prozesse an der Oberfläche des Nanoteilchens entscheidend zur enormen Festigkeit beitragen.

Der Grund: Bei einem großen, makroskopischen Körper stecken die allermeisten Atome im Inneren des Kristalls, nur ein winziger Bruchteil befindet sich an der Oberfläche. Bei einem Nanoteilchen dagegen sitzt ein relativ großer Teil der Atome an der Oberfläche. Dadurch werden Oberflächeneffekte bestimmend für die mechanischen Eigenschaften. Ebendies konnten die HZG-Wissenschaftler nun in ihrem Versuch zeigen, indem sie bestimmte Oberflächeneffekte mithilfe experimenteller Tricks abschwächen und sogar abschalten konnten.

In ihrer aktuellen Veröffentlichung in „Nature Communications“ gelang es den Fachleuten, die Art der Oberflächeneffekte näher zu beleuchten und den Einfluss zweier verschiedener Phänomene zu bestimmen. „Hierbei erlebten wir eine Überraschung“, sagt Weißmüllers Kollegin Dr. Nadiia Mameka. „Unsere Ergebnisse haben die Aussagen der Computerexperimente widerlegt.“ Demnach ist es nicht wie angenommen die zwischen den Oberflächenatomen wirkende Kraft, die die mechanischen Eigenschaften der Nanoteilchen bestimmt. „Stattdessen dürfte die in der Oberfläche steckende Energie für die Festigkeit verantwortlich sein“, erklärt Mameka. „Das ist neu und völlig unerwartet.“

Künftig könnten solche Erkenntnisse helfen, neuartige Materialien auf Nanobasis zu entwickeln – hochinteressant etwa für den Leichtbau, aber auch für Werkstoffe mit eingebauten Sensoreigenschaften. „Indem wir die grundlegenden Eigenschaften dieser Nanoteilchen besser verstehen“ betont Jörg Weißmüller, „können wir künftige Werkstoffe gezielter entwickeln.“

Die Veröffentlichungen:

Nature Communications: DOI: 10.1038/s41467-017-01434-2.

Nano Letters,
DOI:10.1021/acs.nanolett.7b02950 Nano Lett. 2017, 17, 6258 − 6266

Weitere Informationen:

http://www.nature.com/ncomms Veröffentlichung bei Nature Communications
http://pubsdc3.acs.org/doi/pdf/10.1021/acs.nanolett.7b02950 Nano Letters

Dr. Torsten Fischer | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics