Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Goldrausch" im Chemielabor: Neue Materialien für die Hochtemperatur-Supraleitung gesucht

26.06.2009
Universitäten in Mainz, Paderborn, Princeton und das Max-Planck-Institut für Chemie kooperieren bei der Suche nach geeigneten Kandidaten

Es ist zwar kein Gold, aber seine Entdeckung dürfte fast genauso wertvoll sein: Wer zuerst das geeignete Material für die Hochtemperatur-Supraleitung findet, hält den Schlüssel für völlig neue Zukunftstechnologien in den Händen. "Supraleiter, wie sie heute schon eingesetzt werden, funktionieren nur bei sehr tiefen Temperaturen.

Der Traum wäre ein Hochtemperatur-Supraleiter, der den Strom bei Raumtemperatur ohne Verluste transportieren kann", erklärt Univ.-Prof. Dr. Claudia Felser vom Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität Mainz.

Im Rahmen verschiedener Forschungskooperationen untersucht die Chemikerin neue Materialien, die als geeignete Kandidaten erscheinen. Hoffnungsträger ist neuerdings eine Verbindung aus Eisen und Selen, das Eisenselenid. Eine Kooperationsarbeit über diese Verbindung wurde nun im Fachmagazin Nature Materials veröffentlicht.

Supraleitung entsteht, wenn bestimmte Materialien durch Herunterkühlen auf eine sehr tiefe Temperatur ihren magnetischen Widerstand verlieren und der Strom verlustfrei fließen kann. Für Blei beispielsweise liegt diese Temperatur bei etwa minus 265 Grad Celsius. Der Kühlaufwand hierfür ist jedoch enorm, weshalb nach Verbindungen gesucht wird, die bei höheren Temperaturen Supraleitung aufweisen: die Hochtemperatur-Supraleiter. Nur ganz wenige Verbindungen zeigen Supraleitung bei Temperaturen über 30 Kelvin, das sind etwa minus 243 Grad Celsius, und diese Verbindungen werden als Hochtemperatur-Supraleiter bezeichnet.

In den Laboren der Chemiker weltweit herrscht Goldgräberstimmung, seitdem vor rund einem Jahr ein neuer Hochtemperatur-Supraleiter entdeckt worden ist: Verbindungen mit Eisenarsenid-Schichten wie zum Beispiel Ba0.6K0.4Fe2As2 in der chemischen Formel. Die Entdeckung war überraschend, weil Eisen ein magnetisches Material ist, Magnetismus und Supraleitung sich aber grundsätzlich ausschließen. "Die Hochtemperatur-Supraleitung ist noch nicht wirklich verstanden. Wir können daher nur annehmen, dass Eisen in den supraleitenden Verbindungen aufgrund einer bestimmten Anordnung seiner Atome im Kristall und der besonderen elektronischen Struktur unmagnetisch wird", erklärt Frederick Casper aus der Arbeitsgruppe von Prof. Felser. "Der Magnetismus wird praktisch ausgetrickst."

Ganz ähnlich wie die komplexen Eisenarsenid-Verbindungen verhält sich auch das Eisenselenid, mit der einfachen chemischen Formel FeSe. In einer Forschungskooperation mit der Hochdruckgruppe von Mikhail Eremets am Max-Planck-Institut für Chemie in Mainz, Gerhard Wortmann von der Universität Paderborn und Robert J. Cava von der Princeton University haben die Wissenschaftler der Universität Mainz nun gezeigt, dass Eisenselenid unter einem Druck von 8,9 Gigapascal bei 36,7 Kelvin zum Supraleiter werden kann im Vergleich zu einer Temperatur von 8,5 Kelvin ohne Druck. Unter Druck geht die sogenannte Sprungtemperatur nach oben, also die Temperatur, bei der ein Material supraleitend wird. Wird der Druck auf die FeSe-Probe noch weiter erhöht, verhält sich das Material wie ein Halbleiter. Diese Erkenntnisse über eine chemisch relativ einfache Verbindung wie FeSe sind von großer Bedeutung im Hinblick auf die Suche nach neuen Hochtemperatur-Supraleitern.

"Mit Eisenselenid wird zu den interessanten Hochtemperatur-Supraleitern ein neues und besonders einfaches Material hinzugefügt", erklärt Felser. Eisenselenid ist deshalb besonders interessant, weil es wie Eisenarsenid-Verbindungen zu flexiblen Drähten verarbeitet werden könnte und auch hohe externe Magnetfelder aushält. "Das wäre der Durchbruch für die Hochtemperatur-Supraleitung", so der Mainzer Physiker Vadim Ksenofontov. Andere Materialien für die Hochtemperatur-Supraleitung sind die Cuprate, Verbindungen mit Kupfer, die allerdings spröde sind wie eine Keramik und sich daher schwer verarbeiten lassen.

Der Druck dient in diesen Versuchen quasi als Stellvertreter für andere Elemente, die in das Material eingebracht werden könnten. "Anstelle des mechanischen Drucks, den wir in den Versuchen erzeugen, kann auch ein chemischer Druck hergestellt werden. Dazu müssten dann kleinere Atome eingebracht werden, sodass alle Atome in der Verbindung näher zusammenrücken müssen", sagt Mikhail Eremets. "Druck ist eine exzellente Methode, um Materialien systematisch auf ihr Potenzial als Supraleiter zu testen", so Felser. Durch die Kooperation der Arbeitsgruppen um Felser, Wortmann und Eremets ist nun auch die Anwendung der Mößbauerspektroskopie unter hohem Druck in Mainz möglich - eine Technik, die weltweit nur an wenigen Plätzen angewendet wird und die bei der Suche nach dem "Traum-Material" sehr hilfreich ist. Dazu werden in Mainz weitere Arbeiten im Rahmen von internationalen Kooperationen folgen.

Originalveröffentlichung:
S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann & C. Felser
Electronic and magnetic phase diagram of beta-Fe1.01Se with superconductivity at 36.7 K under pressure

Online publiziert, Nature Materials (14 June 2009) doi:10.1038/nmat2491

Kontakt und Informationen:
Univ.-Prof. Dr. Claudia Felser
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-26266 oder 39-21284
Fax 06131 39-26267
E-Mail: felser@mail.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.superconductivity.de
http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2491.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Energie, sicher und leicht transportiert – Adaptive Verarbeitung komplexer Steuerungsdaten
17.05.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie