Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Goldrausch" im Chemielabor: Neue Materialien für die Hochtemperatur-Supraleitung gesucht

26.06.2009
Universitäten in Mainz, Paderborn, Princeton und das Max-Planck-Institut für Chemie kooperieren bei der Suche nach geeigneten Kandidaten

Es ist zwar kein Gold, aber seine Entdeckung dürfte fast genauso wertvoll sein: Wer zuerst das geeignete Material für die Hochtemperatur-Supraleitung findet, hält den Schlüssel für völlig neue Zukunftstechnologien in den Händen. "Supraleiter, wie sie heute schon eingesetzt werden, funktionieren nur bei sehr tiefen Temperaturen.

Der Traum wäre ein Hochtemperatur-Supraleiter, der den Strom bei Raumtemperatur ohne Verluste transportieren kann", erklärt Univ.-Prof. Dr. Claudia Felser vom Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität Mainz.

Im Rahmen verschiedener Forschungskooperationen untersucht die Chemikerin neue Materialien, die als geeignete Kandidaten erscheinen. Hoffnungsträger ist neuerdings eine Verbindung aus Eisen und Selen, das Eisenselenid. Eine Kooperationsarbeit über diese Verbindung wurde nun im Fachmagazin Nature Materials veröffentlicht.

Supraleitung entsteht, wenn bestimmte Materialien durch Herunterkühlen auf eine sehr tiefe Temperatur ihren magnetischen Widerstand verlieren und der Strom verlustfrei fließen kann. Für Blei beispielsweise liegt diese Temperatur bei etwa minus 265 Grad Celsius. Der Kühlaufwand hierfür ist jedoch enorm, weshalb nach Verbindungen gesucht wird, die bei höheren Temperaturen Supraleitung aufweisen: die Hochtemperatur-Supraleiter. Nur ganz wenige Verbindungen zeigen Supraleitung bei Temperaturen über 30 Kelvin, das sind etwa minus 243 Grad Celsius, und diese Verbindungen werden als Hochtemperatur-Supraleiter bezeichnet.

In den Laboren der Chemiker weltweit herrscht Goldgräberstimmung, seitdem vor rund einem Jahr ein neuer Hochtemperatur-Supraleiter entdeckt worden ist: Verbindungen mit Eisenarsenid-Schichten wie zum Beispiel Ba0.6K0.4Fe2As2 in der chemischen Formel. Die Entdeckung war überraschend, weil Eisen ein magnetisches Material ist, Magnetismus und Supraleitung sich aber grundsätzlich ausschließen. "Die Hochtemperatur-Supraleitung ist noch nicht wirklich verstanden. Wir können daher nur annehmen, dass Eisen in den supraleitenden Verbindungen aufgrund einer bestimmten Anordnung seiner Atome im Kristall und der besonderen elektronischen Struktur unmagnetisch wird", erklärt Frederick Casper aus der Arbeitsgruppe von Prof. Felser. "Der Magnetismus wird praktisch ausgetrickst."

Ganz ähnlich wie die komplexen Eisenarsenid-Verbindungen verhält sich auch das Eisenselenid, mit der einfachen chemischen Formel FeSe. In einer Forschungskooperation mit der Hochdruckgruppe von Mikhail Eremets am Max-Planck-Institut für Chemie in Mainz, Gerhard Wortmann von der Universität Paderborn und Robert J. Cava von der Princeton University haben die Wissenschaftler der Universität Mainz nun gezeigt, dass Eisenselenid unter einem Druck von 8,9 Gigapascal bei 36,7 Kelvin zum Supraleiter werden kann im Vergleich zu einer Temperatur von 8,5 Kelvin ohne Druck. Unter Druck geht die sogenannte Sprungtemperatur nach oben, also die Temperatur, bei der ein Material supraleitend wird. Wird der Druck auf die FeSe-Probe noch weiter erhöht, verhält sich das Material wie ein Halbleiter. Diese Erkenntnisse über eine chemisch relativ einfache Verbindung wie FeSe sind von großer Bedeutung im Hinblick auf die Suche nach neuen Hochtemperatur-Supraleitern.

"Mit Eisenselenid wird zu den interessanten Hochtemperatur-Supraleitern ein neues und besonders einfaches Material hinzugefügt", erklärt Felser. Eisenselenid ist deshalb besonders interessant, weil es wie Eisenarsenid-Verbindungen zu flexiblen Drähten verarbeitet werden könnte und auch hohe externe Magnetfelder aushält. "Das wäre der Durchbruch für die Hochtemperatur-Supraleitung", so der Mainzer Physiker Vadim Ksenofontov. Andere Materialien für die Hochtemperatur-Supraleitung sind die Cuprate, Verbindungen mit Kupfer, die allerdings spröde sind wie eine Keramik und sich daher schwer verarbeiten lassen.

Der Druck dient in diesen Versuchen quasi als Stellvertreter für andere Elemente, die in das Material eingebracht werden könnten. "Anstelle des mechanischen Drucks, den wir in den Versuchen erzeugen, kann auch ein chemischer Druck hergestellt werden. Dazu müssten dann kleinere Atome eingebracht werden, sodass alle Atome in der Verbindung näher zusammenrücken müssen", sagt Mikhail Eremets. "Druck ist eine exzellente Methode, um Materialien systematisch auf ihr Potenzial als Supraleiter zu testen", so Felser. Durch die Kooperation der Arbeitsgruppen um Felser, Wortmann und Eremets ist nun auch die Anwendung der Mößbauerspektroskopie unter hohem Druck in Mainz möglich - eine Technik, die weltweit nur an wenigen Plätzen angewendet wird und die bei der Suche nach dem "Traum-Material" sehr hilfreich ist. Dazu werden in Mainz weitere Arbeiten im Rahmen von internationalen Kooperationen folgen.

Originalveröffentlichung:
S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann & C. Felser
Electronic and magnetic phase diagram of beta-Fe1.01Se with superconductivity at 36.7 K under pressure

Online publiziert, Nature Materials (14 June 2009) doi:10.1038/nmat2491

Kontakt und Informationen:
Univ.-Prof. Dr. Claudia Felser
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-26266 oder 39-21284
Fax 06131 39-26267
E-Mail: felser@mail.uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.superconductivity.de
http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2491.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie