Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Ei am Stiel“: Seidenproteine der Florfliege erstmals biotechnologisch hergestellt

18.05.2012
Einem Bayreuther Forschungsteam gelingt die biomimetische Herstellung von Eierstielen – mit weitreichenden Anwendungsperspektiven für die Industrie

Was am seidenen Faden hängt, ist vor Feinden sicher. Nach diesem Prinzip schützen die Florfliegen ihren Nachwuchs, wenn sie ihre Eier an selbst produzierten, hochgradig belastbaren Seidenfäden herabhängen lassen. Diese Eierstiele künstlich nachzubauen, ist jetzt erstmals einem Team um Prof. Dr. Thomas Scheibel und Dipl.-Biol. Felix Bauer an der Universität Bayreuth gelungen. Die neuen Seidenfäden sind wie ihre natürlichen Vorbilder außerordentlich zugfest und biegesteif: ein hochattraktives Material für neue technologische Anwendungen. In der Online-Ausgabe des Journals „Angewandte Chemie“ berichten die Bayreuther Wissenschaftler über ihre Entwicklung, die zum Patent angemeldet wurde.


Durchsichtige Flügel und ein hellgrüner Rumpf sind
charakteristisch für Florfliegen. Foto: Lehrstuhl für Biomaterialien, Universität Bayreuth

Hauchdünn und doch extrem belastbar: die Eierstiele der Florfliege
Die Florfliegen sind eine in Mitteleuropa weitverbreitete Fliegenart, die besonders durch ihre hellgrüne Farbe und ihre durchsichtigen länglichen Flügel auffällt. Weil die aus den Eiern geschlüpften Larven sich von Blattläusen ernähren, werden Florfliegen in der Landwirtschaft gezielt zur biologischen Schädlingsbekämpfung eingesetzt. Um einen Eierstiel zu produzieren, sondert die Florfliege aus ihren Drüsen einen Tropfen Spinnlösung ab, der fest an der Unterseite eines pflanzlichen Blattes haften bleibt. Dann drückt sie ein Ei in diesen Tropfen und zieht das Ei nach unten. So entsteht ein Seidenfaden, der innerhalb weniger Sekunden aushärtet.

Die Eierstiele der Florfliege haben einen Durchmesser von nur 10 Mikrometern. Zum Vergleich: Ein menschliches Haar hat einen fünfmal größeren Durchmesser. Und dennoch erweisen sich die Eierstiele als außerordentlich biegesteif. Denn wenn man die pflanzlichen Blätter, an denen sie herabhängen, herumdreht, zeigen die Eierstiele weiterhin senkrecht nach oben. Trotz des Gewichts der an ihrer Spitze befindlichen Eier werden sie nicht gekrümmt oder zusammengepresst.

Natürlicher Bauplan, künstliche Herstellung: rekombinante Seidenproteine
Prof. Dr. Thomas Scheibel, der an der Universität Bayreuth den Lehrstuhl für Biomaterialien leitet, und sein Doktorand Felix Bauer konnten jetzt erstmals im Labor Eierstiele aus Seidenproteinen nachbauen, die an das natürliche Vorbild in vieler Hinsicht heranreichen. Der zentrale Baustein der künstlich hergestellten Seidenproteine besteht aus 48 Aminosäuren und wiederholt sich achtmal, ähnlich den Gliedern einer Kette. Genauso wie bei natürlichen Seidenproteinen befindet sich am Anfang der Proteinkette eine aminoterminale Domäne und an deren Ende eine carboxyterminale Domäne. Diese Endstücke steuern maßgeblich die Eigenschaften der Seidenproteine.

Für die Herstellung der Seidenproteine haben Scheibel und Bauer ein biotechnologisches Verfahren angewendet, das sie in ähnlicher Form schon bei der Produktion von Spinnenseidenproteinen eingesetzt haben. Ein im Labor synthetisiertes Gen wird in ein ringförmiges Stück DNA eingebaut und in lebende E. coli-Bakterien eingeschleust. Durch Zugabe eines speziellen Zuckers wird die Produktion der Seidenproteine angeregt. Die auf diese Weise biotechnologisch hergestellten Seidenproteine werden auch als rekombinante Seidenproteine bezeichnet.

Künstliche Eierstiele: ein extrem zugfestes und dehnbares Material
Die aus den rekombinanten Seidenproteinen geformten Eierstiele erweisen sich als außerordentlich belastbar. Bei einer Luftfeuchtigkeit von 30% sind sie genauso zugfest und dehnbar wie ihre natürlichen Vorbilder. Das bedeutet: Es muss die gleiche Kraft wie bei natürlichen Eierstielen aufgewendet werden, um die künstlichen Seidenfäden auseinanderzureißen. Erst bei einer hohen Luftfeuchtigkeit um 70% ändert sich das Bild. Dann sind die Eierstiele der Florfliege den Kopien aus dem Labor klar überlegen: Sie lassen sich bis auf das Sechsfache ihrer ursprünglichen Länge ausdehnen, ohne dabei zu reißen.

Die Bayreuther Wissenschaftler arbeiten jedoch daran, die Belastbarkeit der künstlichen Eierstiele auch bei höheren Luftfeuchten weiter zu steigern. Die Natur bleibt dabei ein Vorbild. Denn die Eierstiele der Florfliegen verdanken ihre extreme Dehnbarkeit und Zugfestigkeit vor allem ihrer inneren Struktur. Die einzelnen Seidenproteine sind nämlich innerhalb des senkrechten Eierstiels so angeordnet, dass ihre Längsachsen horizontal verlaufen; also im rechten Winkel zur Faserachse des Eierstiels stehen. Daher können sie wie die Falten einer Ziehharmonika auseinandergezogen werden, ohne dass der Stiel zerreißt. Diese sogenannte „Cross-Beta-Struktur“ der Eierstiele wird von den rekombinanten Seidenproteinen bisher noch nicht gebildet. „Aber wir sind zuversichtlich, dass es uns bald gelingen wird, die Natur auch in dieser Hinsicht nachahmen zu können. Dann werden unsere neuen Seidenfasern noch belastbarer, noch leistungsstärker sein“, erklärt Scheibel.

Auf dem Weg zu technologischen Anwendungen

Bereits jetzt zeichnet sich ein breites Anwendungsfeld der künstlich erzeugten Seidenproteine ab. Sie können nicht nur zu neuartigen Fasern, sondern auch zu Beschichtungen, hauchdünnen Filmen oder winzigen Kapseln weiterverarbeitet werden. In diesen Formen sind sie beispielsweise für Anwendungen in der Kosmetik, Medizintechnik oder der pharmazeutischen Industrie, aber auch in technischen Anwendungen der Kunststoffindustrie von hohem Interesse.

Veröffentlichung:
Felix Bauer und Thomas Scheibel,
Artifizielle Eierstiele, hergestellt aus rekombinant produziertem Florfliegenseidenprotein,
in: Angewandte Chemie (2012), Article first published online: 16 May 2012,
DOI: 10.1002/ange.201200591
Ansprechpartner für weitere Informationen:
Prof. Dr. Thomas Scheibel
Lehrstuhl für Biomaterialien
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55-7361
E-Mail: thomas.scheibel@bm.uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://ww.uni-bayreuth.de/presse/images/2012/196

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Sparsamer abheben dank Leichtbau-Luftdüsen
23.10.2017 | Technische Universität Chemnitz

nachricht Stickoxide: Neuartiger Katalysator soll Abgase ohne Zusätze reinigen
23.10.2017 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie