Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Ei am Stiel“: Seidenproteine der Florfliege erstmals biotechnologisch hergestellt

18.05.2012
Einem Bayreuther Forschungsteam gelingt die biomimetische Herstellung von Eierstielen – mit weitreichenden Anwendungsperspektiven für die Industrie

Was am seidenen Faden hängt, ist vor Feinden sicher. Nach diesem Prinzip schützen die Florfliegen ihren Nachwuchs, wenn sie ihre Eier an selbst produzierten, hochgradig belastbaren Seidenfäden herabhängen lassen. Diese Eierstiele künstlich nachzubauen, ist jetzt erstmals einem Team um Prof. Dr. Thomas Scheibel und Dipl.-Biol. Felix Bauer an der Universität Bayreuth gelungen. Die neuen Seidenfäden sind wie ihre natürlichen Vorbilder außerordentlich zugfest und biegesteif: ein hochattraktives Material für neue technologische Anwendungen. In der Online-Ausgabe des Journals „Angewandte Chemie“ berichten die Bayreuther Wissenschaftler über ihre Entwicklung, die zum Patent angemeldet wurde.


Durchsichtige Flügel und ein hellgrüner Rumpf sind
charakteristisch für Florfliegen. Foto: Lehrstuhl für Biomaterialien, Universität Bayreuth

Hauchdünn und doch extrem belastbar: die Eierstiele der Florfliege
Die Florfliegen sind eine in Mitteleuropa weitverbreitete Fliegenart, die besonders durch ihre hellgrüne Farbe und ihre durchsichtigen länglichen Flügel auffällt. Weil die aus den Eiern geschlüpften Larven sich von Blattläusen ernähren, werden Florfliegen in der Landwirtschaft gezielt zur biologischen Schädlingsbekämpfung eingesetzt. Um einen Eierstiel zu produzieren, sondert die Florfliege aus ihren Drüsen einen Tropfen Spinnlösung ab, der fest an der Unterseite eines pflanzlichen Blattes haften bleibt. Dann drückt sie ein Ei in diesen Tropfen und zieht das Ei nach unten. So entsteht ein Seidenfaden, der innerhalb weniger Sekunden aushärtet.

Die Eierstiele der Florfliege haben einen Durchmesser von nur 10 Mikrometern. Zum Vergleich: Ein menschliches Haar hat einen fünfmal größeren Durchmesser. Und dennoch erweisen sich die Eierstiele als außerordentlich biegesteif. Denn wenn man die pflanzlichen Blätter, an denen sie herabhängen, herumdreht, zeigen die Eierstiele weiterhin senkrecht nach oben. Trotz des Gewichts der an ihrer Spitze befindlichen Eier werden sie nicht gekrümmt oder zusammengepresst.

Natürlicher Bauplan, künstliche Herstellung: rekombinante Seidenproteine
Prof. Dr. Thomas Scheibel, der an der Universität Bayreuth den Lehrstuhl für Biomaterialien leitet, und sein Doktorand Felix Bauer konnten jetzt erstmals im Labor Eierstiele aus Seidenproteinen nachbauen, die an das natürliche Vorbild in vieler Hinsicht heranreichen. Der zentrale Baustein der künstlich hergestellten Seidenproteine besteht aus 48 Aminosäuren und wiederholt sich achtmal, ähnlich den Gliedern einer Kette. Genauso wie bei natürlichen Seidenproteinen befindet sich am Anfang der Proteinkette eine aminoterminale Domäne und an deren Ende eine carboxyterminale Domäne. Diese Endstücke steuern maßgeblich die Eigenschaften der Seidenproteine.

Für die Herstellung der Seidenproteine haben Scheibel und Bauer ein biotechnologisches Verfahren angewendet, das sie in ähnlicher Form schon bei der Produktion von Spinnenseidenproteinen eingesetzt haben. Ein im Labor synthetisiertes Gen wird in ein ringförmiges Stück DNA eingebaut und in lebende E. coli-Bakterien eingeschleust. Durch Zugabe eines speziellen Zuckers wird die Produktion der Seidenproteine angeregt. Die auf diese Weise biotechnologisch hergestellten Seidenproteine werden auch als rekombinante Seidenproteine bezeichnet.

Künstliche Eierstiele: ein extrem zugfestes und dehnbares Material
Die aus den rekombinanten Seidenproteinen geformten Eierstiele erweisen sich als außerordentlich belastbar. Bei einer Luftfeuchtigkeit von 30% sind sie genauso zugfest und dehnbar wie ihre natürlichen Vorbilder. Das bedeutet: Es muss die gleiche Kraft wie bei natürlichen Eierstielen aufgewendet werden, um die künstlichen Seidenfäden auseinanderzureißen. Erst bei einer hohen Luftfeuchtigkeit um 70% ändert sich das Bild. Dann sind die Eierstiele der Florfliege den Kopien aus dem Labor klar überlegen: Sie lassen sich bis auf das Sechsfache ihrer ursprünglichen Länge ausdehnen, ohne dabei zu reißen.

Die Bayreuther Wissenschaftler arbeiten jedoch daran, die Belastbarkeit der künstlichen Eierstiele auch bei höheren Luftfeuchten weiter zu steigern. Die Natur bleibt dabei ein Vorbild. Denn die Eierstiele der Florfliegen verdanken ihre extreme Dehnbarkeit und Zugfestigkeit vor allem ihrer inneren Struktur. Die einzelnen Seidenproteine sind nämlich innerhalb des senkrechten Eierstiels so angeordnet, dass ihre Längsachsen horizontal verlaufen; also im rechten Winkel zur Faserachse des Eierstiels stehen. Daher können sie wie die Falten einer Ziehharmonika auseinandergezogen werden, ohne dass der Stiel zerreißt. Diese sogenannte „Cross-Beta-Struktur“ der Eierstiele wird von den rekombinanten Seidenproteinen bisher noch nicht gebildet. „Aber wir sind zuversichtlich, dass es uns bald gelingen wird, die Natur auch in dieser Hinsicht nachahmen zu können. Dann werden unsere neuen Seidenfasern noch belastbarer, noch leistungsstärker sein“, erklärt Scheibel.

Auf dem Weg zu technologischen Anwendungen

Bereits jetzt zeichnet sich ein breites Anwendungsfeld der künstlich erzeugten Seidenproteine ab. Sie können nicht nur zu neuartigen Fasern, sondern auch zu Beschichtungen, hauchdünnen Filmen oder winzigen Kapseln weiterverarbeitet werden. In diesen Formen sind sie beispielsweise für Anwendungen in der Kosmetik, Medizintechnik oder der pharmazeutischen Industrie, aber auch in technischen Anwendungen der Kunststoffindustrie von hohem Interesse.

Veröffentlichung:
Felix Bauer und Thomas Scheibel,
Artifizielle Eierstiele, hergestellt aus rekombinant produziertem Florfliegenseidenprotein,
in: Angewandte Chemie (2012), Article first published online: 16 May 2012,
DOI: 10.1002/ange.201200591
Ansprechpartner für weitere Informationen:
Prof. Dr. Thomas Scheibel
Lehrstuhl für Biomaterialien
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55-7361
E-Mail: thomas.scheibel@bm.uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://ww.uni-bayreuth.de/presse/images/2012/196

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie

Mehr wärmeliebende Tiere und Pflanzen durch Klimawandel

20.02.2017 | Ökologie Umwelt- Naturschutz