Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quadratische Eiskristalle aus der Nanowelt: Überraschungsfund im „Graphen-Sandwich"

27.03.2015

Forscher der Universitäten Ulm, Manchester und der University of Science and Technology of China haben erstmals mittels hochaufgelöster Elektronenmikroskopie quadratische Nano-Eiskristalle zwischen zwei Graphenschichten nachgewiesen. Eigentlich kommen solche Kristalle in sechseckiger Form vor -- zum Beispiel in Schneeflocken. Dieser Zufallsfund, der unter anderem für die Materialwissenschaft und Nanotechnologie wichtig ist, zeigt wieder einmal, dass in der "Nanowelt" ganz eigene Gesetze gelten. Die Ergebnisse der Wissenschaftler sind in der Fachzeitschrift Nature erschienen.

Fest, flüssig und gasförmig. Die Aggregatzustände des Wassers lernt jedes Kind in der Schule kennen. Und auch in der Wissenschaft zählt Wasser sicherlich zu den am besten untersuchten Substanzen. Trotzdem konnten Forscher von den Universitäten Ulm, Manchester und der University of Science and Technology of China dem Element ein Geheimnis abringen:


80keV aberrationskorrigierte Hochauflösungsabbildung von quadratischem Eis eingeschlossen zwischen zwei Graphen-Monolagen

Foto: Uni Ulm

Zwischen zwei Graphenschichten wiesen sie bei Raumtemperatur quadratische Nano-Eiskristalle nach, deren Anordnung überrascht. So wurde wieder einmal deutlich, dass die „Nanowelt“ ihre eigenen Gesetze hat. Diese kürzlich in der hochrenommierten Fachzeitschrift „Nature“ veröffentlichten Ergebnisse sind nicht nur für die Materialwissenschaft und Nanotechnologie bedeutend.

Zunächst wussten die Ulmer Wissenschaftler die unbekannte Struktur, die sie durch das Transmissionselektronenmikroskop sahen, nicht richtig einzuordnen. „Erst eine Diskussion mit den Partnern von der Manchester University und eine detaillierte Struktur- und Elementanalyse brachte uns auf die richtige Spur: Wir sahen ganz offensichtlich winzige quadratische Eiskristalle, die sonst vor allem in sechseckiger Form vorkommen – zum Beispiel in Schneeflocken“, berichtet Professorin Ute Kaiser, Leiterin der Materialwissenschaftlichen Elektronenmikroskopie an der Uni Ulm.

Im Zuge des Projekts SALVE, in dem die Niederspannungs-Transmissionselektronenmikroskopie für strahlenempfindliche Materialien wie Graphen oder Biomoleküle weiterentwickelt werden soll, hatten die Ulmer Forscher Dr. Gerardo Algara-Siller und Dr. Ossi Lehtinen einen Wassertropfen zwischen zwei Graphenschichten gebracht. Mit dem Transmissionselektronenmikroskop wollten sie die Untersuchung eines biologischen Moleküls vorbereiten – doch dann offenbarte sich die Struktur des eingeschlossenen Wassers.

Tatsächlich sind solche dünnen Wasserfilme allgegenwärtig: Selbst in der trockensten Wüste überzieht eine mikroskopische Schicht alle Oberflächen und lässt sich in den kleinsten Poren oder Rissen – zum Beispiel in Gestein – nachweisen. Struktur und Eigenschaften dieser Wasserfilme waren weitestgehend unbekannt. Mit hochaufgelöster bildfehlerkorrigierter Elektronenmikroskopie ist den Forschern die Abbildung der Wassermoleküle und ihre chemische Analyse gelungen.

Das als Träger eingesetzte, transparente „Graphen-Sandwich" war lediglich zwei Atomlagen dick und der so genannte Van der Waals Druck sorgte für die Formung dieser eingeschränkten quadratischen Eis-Struktur bei Raumtemperatur zwischen den Graphenschichten. Anschließend wurden die Hochauflösungsabbildungen mit Bildsimulationen verifiziert – so konnte auch die Stapelordnung von drei Eismonoschichten, wie sie im Experiment gefunden wurden, bestimmt werden.

Die gefundene viereckige Anordnung von Wassermolekülen in der dünnen Eisschicht (siehe Abbildung 1) ist absolut ungewöhnlich für Wasser. In allen bisher bekannten Formen von Eis ordnen sich die Moleküle pyramidenförmig an“, sagt Ute Kaiser. Aber unter welchen Bedingungen kommen solche viereckigen Eiskristalle in der freien Natur vor? Dieser Frage gingen die Wissenschaftler mit Computersimulationen nach, die an der Chinese Academy of Science durchgeführt wurden. Offenbar bilden sich die quadratischen Kristalle im Graphen-Sandwich immer nur dann, wenn der Druck zwischen den Graphenschichten größer als 1 Gigapascal und der Wasserfilm dünn genug ist – sie dürften also in allen Rissen und bei allen Materialien im Nanobereich vorkommen.

An der Herausforderung, die Struktur von eingeschlossenem Wasser zu verstehen, sind schon viele Forscher gescheitert. Doch nun war die Ulmer Gruppe erfolgreich: „Mikroskopische Risse, Poren oder winzige Kanäle sind überall – und das nicht nur auf unserem Planeten. Für die Materialkunde ist es besonders wichtig zu wissen, dass sich Wasser auf der Nanoskala völlig anders verhält“, resümiert Professorin Irina Grigorieva, Leiterin der Forschergruppe aus Manchester. Dieser Gruppe gehört auch Professor Sir Andre Geim an, einer der Wissenschaftler, die 2010 den Nobelpreis für ihre Arbeit zu Graphen erhielten. Vor dem Hintergrund des ultraschnellen Wasserstransports durch Graphen-Nanokanäle hatte Geim bereits über quadratische Eiskristalle spekuliert – und wurde nun bestätigt. Es gibt also noch viel zu entdecken in der Nanowelt.

Weitere Informationen: Prof. Dr. Ute Kaiser: Tel.: 0731 50-22950, ute.kaiser@uni-ulm.de

G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim
& I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519, 443 (2015). DOI: 10.1038/nature14295

Zum Hintergrund:

Die Veröffentlichung ist im Zuge des SALVE- Projekts (Sub-Angström Low-Voltage Electron Microscopy) entstanden. Das Langzeitprojekt wird von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Baden-Württemberg mit über 12 Millionen Euro unterstützt. Projektpartner von SALVE sind die CEOS GmbH und nun auch die US-Firma FEI. Projektziel ist die Erfassung atomarer Strukturen von elektronenstrahlempfindlichen Materialien mit der Niederspannungs-Transmissionselektronenmikroskopie. Graphen, grundsätzlich als „Wunderwerkstoff“ bekannt, spielt eine wichtige Rolle in diesem Projekt, denn es dient als quasi unsichtbarer, das Objekt gegen Elektronenstrahlschädigung schützender Träger. Wie die jüngste Veröffentlichung gezeigt hat, kann Graphen das Objekt aber auch einschränken. Weiterhin ist an der Veröffentlichung der Sonderforschungsbereich/ Transregio 21 CoCoMat (Control of quantum correlation in matter, Universitäten Stuttgart, Tübingen, Ulm, Max-Planck-Institut für Festkörperforschung) beteiligt, in dessen Rahmen die Ulmer Gruppe bestehend aus Professor Fedor Jelezko, Professor Martin Plenio und Professorin Ute Kaiser mit Wissenschaftlern der University of Manchester im Projekt „Quantum simulator with engineered spin arrays in diamond“ zur weiteren Modifizierung von Graphen forscht.
Graphen ist nur eine Atomlage dick und härter als Diamant. Weiterhin ist das Material extrem leicht, flexibel und transparent. Dazu kommt eine hohe Wärme- und Stromleitfähigkeit. Im eine Milliarde Euro schweren und auf zehn Jahre angelegten „EU Graphene Flagship“ forscht nun auch Professorin Ute Kaiser mit ihren Mitarbeitern in der Materialwissenschaftlichen Elektronenmikroskopie daran, Graphen aus den Labors zu holen und für den täglichen Gebrauch einzusetzen.
In Ulm wird das von den Partnern (BASF, Uni Bielefeld, Uni Jena) entwickelte Material elektronenmikroskopisch charakterisiert.

Weitere Informationen:

http://www.salve-project.de

Annika Bingmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie