Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quadratische Eiskristalle aus der Nanowelt: Überraschungsfund im „Graphen-Sandwich"

27.03.2015

Forscher der Universitäten Ulm, Manchester und der University of Science and Technology of China haben erstmals mittels hochaufgelöster Elektronenmikroskopie quadratische Nano-Eiskristalle zwischen zwei Graphenschichten nachgewiesen. Eigentlich kommen solche Kristalle in sechseckiger Form vor -- zum Beispiel in Schneeflocken. Dieser Zufallsfund, der unter anderem für die Materialwissenschaft und Nanotechnologie wichtig ist, zeigt wieder einmal, dass in der "Nanowelt" ganz eigene Gesetze gelten. Die Ergebnisse der Wissenschaftler sind in der Fachzeitschrift Nature erschienen.

Fest, flüssig und gasförmig. Die Aggregatzustände des Wassers lernt jedes Kind in der Schule kennen. Und auch in der Wissenschaft zählt Wasser sicherlich zu den am besten untersuchten Substanzen. Trotzdem konnten Forscher von den Universitäten Ulm, Manchester und der University of Science and Technology of China dem Element ein Geheimnis abringen:


80keV aberrationskorrigierte Hochauflösungsabbildung von quadratischem Eis eingeschlossen zwischen zwei Graphen-Monolagen

Foto: Uni Ulm

Zwischen zwei Graphenschichten wiesen sie bei Raumtemperatur quadratische Nano-Eiskristalle nach, deren Anordnung überrascht. So wurde wieder einmal deutlich, dass die „Nanowelt“ ihre eigenen Gesetze hat. Diese kürzlich in der hochrenommierten Fachzeitschrift „Nature“ veröffentlichten Ergebnisse sind nicht nur für die Materialwissenschaft und Nanotechnologie bedeutend.

Zunächst wussten die Ulmer Wissenschaftler die unbekannte Struktur, die sie durch das Transmissionselektronenmikroskop sahen, nicht richtig einzuordnen. „Erst eine Diskussion mit den Partnern von der Manchester University und eine detaillierte Struktur- und Elementanalyse brachte uns auf die richtige Spur: Wir sahen ganz offensichtlich winzige quadratische Eiskristalle, die sonst vor allem in sechseckiger Form vorkommen – zum Beispiel in Schneeflocken“, berichtet Professorin Ute Kaiser, Leiterin der Materialwissenschaftlichen Elektronenmikroskopie an der Uni Ulm.

Im Zuge des Projekts SALVE, in dem die Niederspannungs-Transmissionselektronenmikroskopie für strahlenempfindliche Materialien wie Graphen oder Biomoleküle weiterentwickelt werden soll, hatten die Ulmer Forscher Dr. Gerardo Algara-Siller und Dr. Ossi Lehtinen einen Wassertropfen zwischen zwei Graphenschichten gebracht. Mit dem Transmissionselektronenmikroskop wollten sie die Untersuchung eines biologischen Moleküls vorbereiten – doch dann offenbarte sich die Struktur des eingeschlossenen Wassers.

Tatsächlich sind solche dünnen Wasserfilme allgegenwärtig: Selbst in der trockensten Wüste überzieht eine mikroskopische Schicht alle Oberflächen und lässt sich in den kleinsten Poren oder Rissen – zum Beispiel in Gestein – nachweisen. Struktur und Eigenschaften dieser Wasserfilme waren weitestgehend unbekannt. Mit hochaufgelöster bildfehlerkorrigierter Elektronenmikroskopie ist den Forschern die Abbildung der Wassermoleküle und ihre chemische Analyse gelungen.

Das als Träger eingesetzte, transparente „Graphen-Sandwich" war lediglich zwei Atomlagen dick und der so genannte Van der Waals Druck sorgte für die Formung dieser eingeschränkten quadratischen Eis-Struktur bei Raumtemperatur zwischen den Graphenschichten. Anschließend wurden die Hochauflösungsabbildungen mit Bildsimulationen verifiziert – so konnte auch die Stapelordnung von drei Eismonoschichten, wie sie im Experiment gefunden wurden, bestimmt werden.

Die gefundene viereckige Anordnung von Wassermolekülen in der dünnen Eisschicht (siehe Abbildung 1) ist absolut ungewöhnlich für Wasser. In allen bisher bekannten Formen von Eis ordnen sich die Moleküle pyramidenförmig an“, sagt Ute Kaiser. Aber unter welchen Bedingungen kommen solche viereckigen Eiskristalle in der freien Natur vor? Dieser Frage gingen die Wissenschaftler mit Computersimulationen nach, die an der Chinese Academy of Science durchgeführt wurden. Offenbar bilden sich die quadratischen Kristalle im Graphen-Sandwich immer nur dann, wenn der Druck zwischen den Graphenschichten größer als 1 Gigapascal und der Wasserfilm dünn genug ist – sie dürften also in allen Rissen und bei allen Materialien im Nanobereich vorkommen.

An der Herausforderung, die Struktur von eingeschlossenem Wasser zu verstehen, sind schon viele Forscher gescheitert. Doch nun war die Ulmer Gruppe erfolgreich: „Mikroskopische Risse, Poren oder winzige Kanäle sind überall – und das nicht nur auf unserem Planeten. Für die Materialkunde ist es besonders wichtig zu wissen, dass sich Wasser auf der Nanoskala völlig anders verhält“, resümiert Professorin Irina Grigorieva, Leiterin der Forschergruppe aus Manchester. Dieser Gruppe gehört auch Professor Sir Andre Geim an, einer der Wissenschaftler, die 2010 den Nobelpreis für ihre Arbeit zu Graphen erhielten. Vor dem Hintergrund des ultraschnellen Wasserstransports durch Graphen-Nanokanäle hatte Geim bereits über quadratische Eiskristalle spekuliert – und wurde nun bestätigt. Es gibt also noch viel zu entdecken in der Nanowelt.

Weitere Informationen: Prof. Dr. Ute Kaiser: Tel.: 0731 50-22950, ute.kaiser@uni-ulm.de

G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim
& I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature 519, 443 (2015). DOI: 10.1038/nature14295

Zum Hintergrund:

Die Veröffentlichung ist im Zuge des SALVE- Projekts (Sub-Angström Low-Voltage Electron Microscopy) entstanden. Das Langzeitprojekt wird von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Baden-Württemberg mit über 12 Millionen Euro unterstützt. Projektpartner von SALVE sind die CEOS GmbH und nun auch die US-Firma FEI. Projektziel ist die Erfassung atomarer Strukturen von elektronenstrahlempfindlichen Materialien mit der Niederspannungs-Transmissionselektronenmikroskopie. Graphen, grundsätzlich als „Wunderwerkstoff“ bekannt, spielt eine wichtige Rolle in diesem Projekt, denn es dient als quasi unsichtbarer, das Objekt gegen Elektronenstrahlschädigung schützender Träger. Wie die jüngste Veröffentlichung gezeigt hat, kann Graphen das Objekt aber auch einschränken. Weiterhin ist an der Veröffentlichung der Sonderforschungsbereich/ Transregio 21 CoCoMat (Control of quantum correlation in matter, Universitäten Stuttgart, Tübingen, Ulm, Max-Planck-Institut für Festkörperforschung) beteiligt, in dessen Rahmen die Ulmer Gruppe bestehend aus Professor Fedor Jelezko, Professor Martin Plenio und Professorin Ute Kaiser mit Wissenschaftlern der University of Manchester im Projekt „Quantum simulator with engineered spin arrays in diamond“ zur weiteren Modifizierung von Graphen forscht.
Graphen ist nur eine Atomlage dick und härter als Diamant. Weiterhin ist das Material extrem leicht, flexibel und transparent. Dazu kommt eine hohe Wärme- und Stromleitfähigkeit. Im eine Milliarde Euro schweren und auf zehn Jahre angelegten „EU Graphene Flagship“ forscht nun auch Professorin Ute Kaiser mit ihren Mitarbeitern in der Materialwissenschaftlichen Elektronenmikroskopie daran, Graphen aus den Labors zu holen und für den täglichen Gebrauch einzusetzen.
In Ulm wird das von den Partnern (BASF, Uni Bielefeld, Uni Jena) entwickelte Material elektronenmikroskopisch charakterisiert.

Weitere Informationen:

http://www.salve-project.de

Annika Bingmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive