Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pseudoteilchen wandern durch photoaktives Material

22.04.2015

Einen wichtigen Schritt der Umwandlung von Licht in speicherbare Energie haben Forscher des Karlsruher Instituts für Technologie (KIT) aufgeklärt: Gemeinsam mit Wissenschaftlern des Fritz-Haber-Instituts Berlin und der Aalto University in Helsinki/Finnland untersuchten sie die Bildung von sogenannten Polaronen in Zinkoxid. Die Pseudoteilchen wandern durch das photoaktive Material, bis sie an einer Grenzschicht in elektrische oder chemische Energie umgewandelt werden. Ihre unter anderem für die Photovoltaik wichtigen Erkenntnisse veröffentlichen die Forscher in der renommierten Zeitschrift Nature Communications.

Prozesse, die Licht in speicherbare Energie umwandeln, können wesentlich zu einer nachhaltigen Energieversorgung beitragen. Die Natur nutzt solche Prozesse schon seit Milliarden von Jahren bei der Photosynthese, um mithilfe von Licht Kohlenhydrate aufzubauen.


An dem photoaktiven Material Zinkoxid untersuchten die Wissenschaftler die Bildung und Bewegung von sogenannten Polaronen.

(Abbildung: Patrick Rinke/Aalto University)

In der Forschung gewinnt die Photokatalyse, die Licht nutzt, um chemische Prozesse zu beschleunigen, immer mehr an Bedeutung. Auch bei der Photovoltaik, die einfallendes Sonnenlicht direkt in elektrische Energie umwandelt, haben Forscher in den vergangenen Jahren beachtliche Fortschritte erzielt. Der Wirkungsgrad hat sich stetig verbessert.

Allerdings sind die der Photovoltaik zugrunde liegenden Prozesse bis jetzt nur in groben Zügen erforscht. „Die Umwandlung der Photonen, das heißt Lichtteilchen, in elektrische Energie geschieht über mehrere Schritte“, erklärt Professor Christof Wöll, Leiter des Instituts für Funktionelle Grenzflächen (IFG) des KIT. Zunächst wird in einem photoaktiven Material Licht absorbiert.

Einzelne Elektronen werden von ihrem Platz gelöst und lassen an diesem ein Loch zurück. Die Elektronen-Loch-Paare sind nur für kurze Zeit stabil. Danach zerfallen sie entweder unter Lichtabstrahlung oder werden in ein Elektron und ein Loch aufgespalten, die sich dann unabhängig voneinander im Material bewegen. Was mit diesen geladenen Teilchen weiter geschieht, hängt vom Material ab.

In den meisten Materialien sind freie Löcher nicht stabil, sondern werden unter Energieverlust in sogenannte Polaronen umgewandelt. Ein Polaron ist ein spezielles Pseudoteilchen, das sich aus einem Teilchen und dessen Wechselwirkung mit seiner Umgebung zusammensetzt. Die gebildeten Polaronen sind für längere Zeit stabil und wandern durch das photoaktive Material, bis sie an einer Grenzschicht in elektrische oder chemische Energie umgewandelt werden.

Forscher des KIT um Professor Christof Wöll haben nun Experimente an dem photoaktiven Material Zinkoxid durchgeführt, um Bildung und Bewegung der Polaronen zu untersuchen. Dabei setzten sie eine am KIT entwickelte, weltweit einzigartige Apparatur zur Infrarot-Reflexions-Absorptions-Spektroskopie (IRRAS) mit einer zeitlichen Auflösung von 100 Millisekunden ein.

Sie maßen Infrarotspektren an Zinkoxid-Einkristallen und beobachteten intensive Absorptionsbanden, sozusagen Fingerabdrücke, eines bislang unbekannten Pseudoteilchens. Die Interpretation der Daten und die Identifikation dieses neuen Teilchens stellte die Karlsruher Forscher zunächst vor große Herausforderungen.

Erst in Zusammenarbeit mit einer Arbeitsgruppe, die am Fritz-Haber-Institut und im Exzellenzzentrum für Rechnergestützte Nanophysik (COMP) der Aalto University tätig ist, gelang es, die Absorptionsbanden eindeutig sogenannten Loch-Polaronen zuzuordnen. „Ein wichtiges Ergebnis, das im Jahr 2015 als internationales Jahr des Lichts und der lichtbasierten Technologien besonders erfreulich ist“, sagt Professor Wöll.

Hikmet Sezen, Honghui Shang, Fabian Bebensee, Chengwu Yang, Maria Buchholz, Alexei Nefedov, Stefan Heissler, Christian Carbogno, Matthias Scheffler, Patrick Rinke, and Christof Wöll: Evidence for photogenerated intermediate hole polarons in ZnO. Nature Communications, 22nd April 2015. DOI 10.1038/ncomms7901

Das Karlsruher Institut für Technologie (KIT) vereint als selbständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu


Anhang

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics