Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Polymere werden berechenbar - Neues Simulationsverfahren für Kunststoffe und Biopolymere

03.05.2010
Was hält ein neuer Kunststoff aus, wie halten Biopolymere zusammen? Durch eine Vorausberechnung der Eigenschaften, könnten Materialwissenschaftler massiv Entwicklungskosten sparen und Biophysiker die Eigenschaften von Biopolymeren und menschlichen Zellen untersuchen.

Doch bisherige Berechnungsmethoden stoßen hier an ihre Grenzen. Ingenieure der Technischen Universität München haben nun die im Ingenieurwesen häufig angewandte Finite-Elemente-Methode so erweitert, dass eine derartige Vorausberechnung möglich wird.

Technische Kunststoffe bestehen aus langen, kettenartigen Molekülen. Deren Beweglichkeit hat einen entscheidenden Einfluss auf die Materialeigenschaften. Könnte man sie besser vorausberechnen, so würde dies bei der Entwicklung neuer Kunststoffe sehr viel Zeit und Geld sparen. Auch die Biologie steht vor ähnlichen Problemen: Biopolymere Netzwerke sind von entscheidender Bedeutung für eine Vielzahl biologisch und medizinisch relevanter Prozesse im menschlichen Körper. Insbesondere sind sie wichtig für Teilung, Bewegung und Verformung von Zellen.

Aufgrund der enormen Komplexität dieser Netzwerke ist eine Untersuchung oft nur mit Computersimulationen möglich. Die Größe und die komplexen Eigenschaften der in Materialwissenschaft und Biologie zu simulierenden Systeme setzen einer präzisen Modellierung jedoch bislang enge Grenzen. Bei Verwendung der bisher in diesen Bereichen üblichen Simulationsverfahren sprengt der Rechenaufwand selbst die Möglichkeiten von Supercomputern.

Professor Wolfgang Wall und sein Team am Lehrstuhl für Numerische Mechanik der TU München haben nun die in den Ingenieurwissenschaften als höchst effizientes Verfahren bekannte Finite-Elemente-Methode so erweitert, dass sie auch für die Simulation der Mikromechanik von Kunststoffen und Biopolymeren eingesetzt werden kann. Die Finite-Elemente-Methode erlaubt es, physikalische Effekte in einem bestimmten Gebiet zu simulieren, indem die Vorgänge auf kleinen Teilgebieten, den Finiten Elementen, in ihrer Auswirkung zusammengefasst werden und so genannten Knoten zugeschlagen werden. Während der Simulation genügt es dann, alle Rechenschritte nur noch in Bezug auf diese diskreten Knoten auszuführen.

Bislang war nicht bekannt, wie bei diesem Verfahren die in der Bio- und Polymerphysik essentiellen Effekte der statistischen Mechanik berücksichtigt werden können. Denn die Moleküle werden durch die Umgebungswärme ständig zufällig angeregt und bewegen sich daher ständig ein klein wenig. Die neu entwickelte Simulationsmethode löst dieses Problem und öffnet damit den Weg zu einer höchst effizienten Simulation der statistischen Polymer- und Biophysik. Dies ermöglicht die computergestützte Analyse auch solcher Systeme, die bislang zu groß und komplex waren.

„Die großen Vorteile der neuen Methode sind ihre Vielseitigkeit, ihre Effizienz sowie ihre solide mathematische Basis“, sagt Professor Wall. Die grundlegende Methode wird bereits für viele verschiedene Probleme aus Technik und Naturwissenschaft genutzt – zur Simulation derartiger Fragestellungen wurde sie jedoch bislang noch nicht eingesetzt. Dazu waren theoretisch anspruchsvolle Erweiterungen nötig. Erfreulicher Weise lassen sich diese jedoch in die Vielzahl bestehender, bereits weit entwickelter Softwarepakete leicht einbauen, um die Methode direkt in Simulationen anwenden zu können.

Mit Hilfe des neuen Simulationsverfahrens wollen die Ingenieure zusammen mit Biophysikern im Rahmen eines Projektes der International Graduate School of Science and Engineering (IGSSE) der TUM wesentliche Fortschritte beim Verständnis des Verhaltens biopolymerer Netzwerke erzielen. „Wir wollen verstehen, wie biopolymere Netzwerke dynamisch auf äußere Belastungen reagieren und dabei z.B. ihre Struktur anpassen.“ sagt Christian Cyron, Doktorand am Lehrstuhl für Numerische Mechanik. Daraus können wir dann ein besseres Verständnis für das mechanische Verhalten menschlicher Zellen gewinnen, das ja ebenfalls maßgeblich von einem biopolymeren Netzwerk, dem Zytoskelett, bestimmt wird. Langfristig können diese Erkenntnisse dann zur Entwicklung neuer medizinischer Technologien führen.

Originalpublikation:
Finite-element approach to Brownian dynamics of polymers, Christian J. Cyron and Wolfgang A. Wall, Physical Review E 80, 066704 2009 – DOI: 10.1103/PhysRevE.80.066704
Kontakt:
Prof. Dr. Wolfgang A. Wall
Technische Universität München
Lehrstuhl für Numerische Mechanik
Boltzmannstr. 15, 85748 Garching
Tel.: +49 89 289 15300 – Fax: +49 89 289 15301
E-Mail: wall@lnm.mw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.lnm.mw.tum.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics