Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Polymer Membranes with Molecular-sized Channels That Assemble Themselves

12.01.2011
Many futurists envision a world in which polymer membranes with molecular-sized channels are used to capture carbon, produce solar-based fuels, or desalinate sea water, among many other functions. This will require methods by which such membranes can be readily fabricated in bulk quantities. A technique representing a significant first step down that road has now been successfully demonstrated.

Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have developed a solution-based method for inducing the self-assembly of flexible polymer membranes with highly aligned subnanometer channels. Fully compatible with commercial membrane-fabrication processes, this new technique is believed to be the first example of organic nanotubes fabricated into a functional membrane over macroscopic distances.

“We’ve used nanotube-forming cyclic peptides and block co-polymers to demonstrate a directed co-assembly technique for fabricating subnanometer porous membranes over macroscopic distances,” says Ting Xu, a polymer scientist who led this project. “This technique should enable us to generate porous thin films in the future where the size and shape of the channels can be tailored by the molecular structure of the organic nanotubes.”

Ting Xu holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley's Departments of Materials Sciences and Engineering, and Chemistry. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

Xu, who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California Berkeley’s Departments of Materials Sciences and Engineering, and Chemistry, is the lead author of a paper describing this work, which has been published in the journal ACS Nano. The paper is titled “Subnanometer Porous Thin Films by the Co-assembly of Nanotube Subunits and Block Copolymers.”

Co-authoring the paper with Xu were Nana Zhao, Feng Ren, Rami Hourani, Ming Tsang Lee, Jessica Shu, Samuel Mao, and Brett Helms, who is with the Molecular Foundry, a DOE nanoscience center hosted at Berkeley Lab.

Channeled membranes are one of nature’s most clever and important inventions. Membranes perforated with subnanometer channels line the exterior and interior of a biological cell, controlling – by virtue of size – the transport of essential molecules and ions into, through, and out of the cell. This same approach holds enormous potential for a wide range of human technologies, but the challenge has been finding a cost-effective means of orienting vertically-aligned subnanometer channels over macroscopic distances on flexible substrates.

“Obtaining molecular level control over the pore size, shape, and surface chemistry of channels in polymer membranes has been investigated across many disciplines but has remained a critical bottleneck,” Xu says. “Composite films have been fabricated using pre-formed carbon nanotubes and the field is making rapid progess, however, it still presents a challenge to orient pre-formed nanotubes normal to the film surface over macroscopic distances.”

Schematic drawing depicts process by which a polymer is tethered to cyclic peptides (8CP)then blended with block copolymers (BCPs) to make a membrane permeated with subnanometer channels in the form of organic nanotubes.

For their subnanometer channels, Xu and her research group used the organic nanotubes naturally formed by cyclic peptides – polypeptide protein chains that connect at either end to make a circle. Unlike pre-formed carbon nanotubes, these organic nanotubes are “reversible,” which means their size and orientation can be easily modified during the fabrication process. For the membrane, Xu and her collaborators used block copolymers – long sequences or “blocks” of one type of monomer molecule bound to blocks of another type of monomer molecule. Just as cyclic peptides self-assemble into nanotubes, block copolymers self-assemble into well-defined arrays of nanostructures over macroscopic distances. A polymer covalently linked to the cyclic peptide was used as a “mediator” to bind together these two self-assembling systems

“The polymer conjugate is the key,” Xu says. “It controls the interface between the cyclic peptides and the block copolymers and synchronizes their self-assembly. The result is that nanotube channels only grow within the framework of the polymer membrane. When you can make everything work together this way, the process really becomes very simple.”

Xu and her colleagues were able to fabricate subnanometer porous membranes measuring several centimeters across and featuring high-density arrays of channels. The channels were tested via gas transport measurements of carbon dioxide and neopentane. These tests confirmed that permeance was higher for the smaller carbon dioxide molecules than for the larger molecules of neopentane. The next step will be to use this technique to make thicker membranes.

“Theoretically, there are no size limitations for our technique so there should be no problem in making membranes over large area,” Xu says. “We’re excited because we believe this demonstrates the feasibility of synchronizing multiple self-assembly processes by tailoring secondary interactions between individual components. Our work opens a new avenue to achieving hierarchical structures in a multicomponent system simultaneously, which in turn should help overcome the bottleneck to achieving functional materials using a bottom-up approach.”

This research was supported by DOE’s Office of Science and by the U.S. Army Research Office. Measurements were carried out on beamlines at Berkeley Lab’s Advanced Light Source and at the Advanced Photon Source of Argonne National Laboratory.

Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our at www.lbl.gov

Additional Information

For more information on the research of Ting Xu, visit her Website at http://www.mse.berkeley.edu/groups/xu/index.htm

A copy of the paper in ACS Nano paper “Subnanometer Porous Thin Films by the Co-assembly of Nanotube Subunits and Block Copolymers” is available at http://pubs.acs.org/doi/abs/10.1021/nn103083t

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht How to maximize the superconducting critical temperature in a molecular superconductor
20.04.2015 | Tohoku University

nachricht Diamonds get more beautiful with laser lamps
16.04.2015 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Get flexible – get lighter – get smarter – Innovative Materialien für Zukunftsprodukte

Das Fraunhofer-Institut für Silicatforschung ISC aus Würzburg stellt auf der IDTechEx in Berlin vom 28. bis 29. April 2015 neue, multifunktionale Materialien vor, mit denen sich innovative Anwendungen und Produkte realisieren lassen. Arbeitsschwerpunkte sind Barrierematerialien, gedruckte Elektronik, elektrochrome Folien sowie Smart Materials. Sie bedienen die Trends in Industrie und Design zu immer flexibleren, leichteren und intelligenteren Produkten. Das Fraunhofer ISC ist am Stand F17 im Convention Center und Hotel Estrel zu finden.

Präsentiert werden beispielsweise innovative Verkapselungsfolien, die das Fraunhofer ISC zusammen mit dem Fraunhofer IVV entwickelt hat. Die kostengünstig im...

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Fortschritt für die molekulare Elektronik: Licht an – Molekül an

Mit einzelnen Molekülen Informationen zu speichern und verarbeiten, um daraus kleinstmögliche Bausteine zu entwickeln, die sich selbstständig zu einem Schaltkreis zusammensetzen – daran arbeiten Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) und der Universität Konstanz. Wie sie nun in der Fachzeitschrift „Advanced Science“ berichten, konnten sie erstmalig den Stromfluss durch ein einzelnes Molekül mit Hilfe von Licht einschalten.

Die molekulare Elektronik wird zukünftig ein Fenster hin zu neuartigen und immer noch kleineren und zugleich energieeffizienten Bauelementen oder Sensoren...

Im Focus: Wie Blutgefässe veröden: Zellen verschmelzen mit sich selbst

Zellen im Blutgefäßsystem von Wirbeltieren können mit sich selbst verschmelzen. Diesen Prozess, der auftritt, wenn ein Blutgefäß nicht mehr benötigt und zurückgebildet wird, hat das Forschungsteam von Prof. Markus Affolter am Biozentrum der Universität Basel erstmals auf zellulärer Ebene beschrieben. Die Ergebnisse der Studie sind im Fachjournal «PLoS Biology» veröffentlicht.

Blutgefässe bilden das Versorgungsnetzwerk des menschlichen Organismus. Sie versorgen ihn mit Sauerstoff und Nährstoffen bis in den letzten Winkel jedes...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zurück zu den Wurzeln – größte nationale Tagung für Nuklearmedizin in Hannover

20.04.2015 | Veranstaltungen

DFG-UNU-Konferenz in New York: Wie kann Wissenschaft zur globalen Nachhaltigkeit beitragen?

20.04.2015 | Veranstaltungen

Mehr Schutz vor Krankenhauskeimen

20.04.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Meeresströmungen beeinflussen Methanabbau

20.04.2015 | Geowissenschaften

Bahnbrechende Erkenntnis: Robben interpretieren ihre eigene Bewegung

20.04.2015 | Biowissenschaften Chemie

Earth Day 2015 - Platin dreht sich immer im Kreis

20.04.2015 | Ökologie Umwelt- Naturschutz