Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Polymer Membranes with Molecular-sized Channels That Assemble Themselves

Many futurists envision a world in which polymer membranes with molecular-sized channels are used to capture carbon, produce solar-based fuels, or desalinate sea water, among many other functions. This will require methods by which such membranes can be readily fabricated in bulk quantities. A technique representing a significant first step down that road has now been successfully demonstrated.

Researchers with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have developed a solution-based method for inducing the self-assembly of flexible polymer membranes with highly aligned subnanometer channels. Fully compatible with commercial membrane-fabrication processes, this new technique is believed to be the first example of organic nanotubes fabricated into a functional membrane over macroscopic distances.

“We’ve used nanotube-forming cyclic peptides and block co-polymers to demonstrate a directed co-assembly technique for fabricating subnanometer porous membranes over macroscopic distances,” says Ting Xu, a polymer scientist who led this project. “This technique should enable us to generate porous thin films in the future where the size and shape of the channels can be tailored by the molecular structure of the organic nanotubes.”

Ting Xu holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley's Departments of Materials Sciences and Engineering, and Chemistry. (Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs)

Xu, who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California Berkeley’s Departments of Materials Sciences and Engineering, and Chemistry, is the lead author of a paper describing this work, which has been published in the journal ACS Nano. The paper is titled “Subnanometer Porous Thin Films by the Co-assembly of Nanotube Subunits and Block Copolymers.”

Co-authoring the paper with Xu were Nana Zhao, Feng Ren, Rami Hourani, Ming Tsang Lee, Jessica Shu, Samuel Mao, and Brett Helms, who is with the Molecular Foundry, a DOE nanoscience center hosted at Berkeley Lab.

Channeled membranes are one of nature’s most clever and important inventions. Membranes perforated with subnanometer channels line the exterior and interior of a biological cell, controlling – by virtue of size – the transport of essential molecules and ions into, through, and out of the cell. This same approach holds enormous potential for a wide range of human technologies, but the challenge has been finding a cost-effective means of orienting vertically-aligned subnanometer channels over macroscopic distances on flexible substrates.

“Obtaining molecular level control over the pore size, shape, and surface chemistry of channels in polymer membranes has been investigated across many disciplines but has remained a critical bottleneck,” Xu says. “Composite films have been fabricated using pre-formed carbon nanotubes and the field is making rapid progess, however, it still presents a challenge to orient pre-formed nanotubes normal to the film surface over macroscopic distances.”

Schematic drawing depicts process by which a polymer is tethered to cyclic peptides (8CP)then blended with block copolymers (BCPs) to make a membrane permeated with subnanometer channels in the form of organic nanotubes.

For their subnanometer channels, Xu and her research group used the organic nanotubes naturally formed by cyclic peptides – polypeptide protein chains that connect at either end to make a circle. Unlike pre-formed carbon nanotubes, these organic nanotubes are “reversible,” which means their size and orientation can be easily modified during the fabrication process. For the membrane, Xu and her collaborators used block copolymers – long sequences or “blocks” of one type of monomer molecule bound to blocks of another type of monomer molecule. Just as cyclic peptides self-assemble into nanotubes, block copolymers self-assemble into well-defined arrays of nanostructures over macroscopic distances. A polymer covalently linked to the cyclic peptide was used as a “mediator” to bind together these two self-assembling systems

“The polymer conjugate is the key,” Xu says. “It controls the interface between the cyclic peptides and the block copolymers and synchronizes their self-assembly. The result is that nanotube channels only grow within the framework of the polymer membrane. When you can make everything work together this way, the process really becomes very simple.”

Xu and her colleagues were able to fabricate subnanometer porous membranes measuring several centimeters across and featuring high-density arrays of channels. The channels were tested via gas transport measurements of carbon dioxide and neopentane. These tests confirmed that permeance was higher for the smaller carbon dioxide molecules than for the larger molecules of neopentane. The next step will be to use this technique to make thicker membranes.

“Theoretically, there are no size limitations for our technique so there should be no problem in making membranes over large area,” Xu says. “We’re excited because we believe this demonstrates the feasibility of synchronizing multiple self-assembly processes by tailoring secondary interactions between individual components. Our work opens a new avenue to achieving hierarchical structures in a multicomponent system simultaneously, which in turn should help overcome the bottleneck to achieving functional materials using a bottom-up approach.”

This research was supported by DOE’s Office of Science and by the U.S. Army Research Office. Measurements were carried out on beamlines at Berkeley Lab’s Advanced Light Source and at the Advanced Photon Source of Argonne National Laboratory.

Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our at

Additional Information

For more information on the research of Ting Xu, visit her Website at

A copy of the paper in ACS Nano paper “Subnanometer Porous Thin Films by the Co-assembly of Nanotube Subunits and Block Copolymers” is available at

Lynn Yarris | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht New Artificial Cells Mimic Nature’s Tiny Reactors
09.10.2015 | Department of Energy, Office of Science

nachricht Reliable in-line inspections of high-strength automotive body parts within seconds
09.10.2015 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Chemie steuert Magnetismus

Magnete sind aus dem Physikunterricht gut bekannt, im Fach Chemie werden sie dagegen nicht behandelt. Und doch ist es ein chemisches Verfahren, mit dem es Forschern am Karlsruher Institut für Technologie (KIT) gelungen ist, die magnetischen Eigenschaften von Ferromagneten zu steuern. Während physikalische Verfahren zwar die Ausrichtung des Magnetfeldes beeinflussen können, steuert hier das chemische Verfahren den Magnetismus des Materials selbst. Das genutzte Prinzip ist dabei dem Konzept des Lithium-Ionen-Akkus ähnlich. (DOI: 10.002/adma-201305932)

Über physikalische Effekte gibt es durchaus Möglichkeiten, Magnete zu beeinflussen. Standard-Methoden nutzen etwa eine elektromagnetische Spule, die durch...

Im Focus: Prüfung pressgehärteter Karosseriebauteile: Prozessintegriert, zuverlässig und sekundenschnell

Für den Anwender ist die zerstörungsfreie Werkstoffprüfung ein effektives Mittel, um schnell eine sichere Aussage über die Qualität seines Produktes bereits während des Fertigungsprozesses zu gewinnen. Die zerstörungsfreie Prüfung (ZfP) stellt insbesondere für die Herstellung von sicherheitsrelevanten Bauteilen, z. B. die B-Säule eines Autos, eine essentielle Qualitätssicherungsmaßnahme dar, da fehlerhafte Materialeigenschaften im Endprodukt schnell zum Versagen führen können. Mit der ZfP wird die Qualität eines Werkstücks getestet, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern.

Das Fraunhofer IZFP präsentiert auf der diesjährigen Blechexpo in Stuttgart ein Exponat zur »Zerstörungsfreien Prüfung pressgehärteter Karosseriebauteile mit...

Im Focus: Neue Methode erleichtert Forschung an Brennstoffzellen-Katalysatoren

Die Reinigung von Autoabgasen ist eines der bekanntesten katalytischen Verfahren. Doch nahezu die gesamte chemische Industrie basiert auf katalytischen Reaktionen. Das Katalysatordesign spielt daher eine Schlüsselrolle bei der Verbesserung vieler Prozesse. Ein internationales Team von Wissenschaftlern hat nun ein Konzept vorgestellt, das die geometrischen und die Adsorptionseigenschaften elegant miteinander in Beziehung setzt. Die Leistungsfähigkeit ihrer Methode zeigten sie am Beispiel eines neu entwickelten Platin-Katalysators für Brennstoffzellen.

Wasserstoff wäre ein idealer Energieträger: Überschüssige Windenergie könnte Wasser in seine Elemente zerlegen, mit dem Wasserstoff ließen sich höchst...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Weltrekord am TRIGA Mainz: 20.000 Pulse in 50 Jahren

Forschungsreaktor hat Anfang Oktober einen neuen Meilenstein erreicht

Der Forschungsreaktor TRIGA an der Johannes Gutenberg-Universität Mainz (JGU) hat zwei Monate nach den Feierlichkeiten zu seinem 50-jährigen Bestehen einen...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

World Health Summit 2015: Pressekonferenz und Eröffnung

09.10.2015 | Veranstaltungen

Bestäuber ohne Lobby? Tagung beleuchtet Wildbienen als sensible Einzelkämpfer

09.10.2015 | Veranstaltungen

Wasserstoff-Speicher als Wegbereiter für die Energiewende

08.10.2015 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Siemens mit dem Digital Enterprise auf dem Weg zu Industrie 4.0

09.10.2015 | Messenachrichten

Energieautarke Fernwirkeinheit ermöglicht Überwachung von Anlagen per Mobilfunk

09.10.2015 | Messenachrichten

Biogene Kantinentabletts auf dem Prüfstand

09.10.2015 | Innovative Produkte