Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Plättchen statt Quantenpunkte

04.04.2017

Forscher um ETH-Professor David Norris klären anhand eines Modells den generellen Mechanismus, wie sich Nano-Plättchen bilden. Mit Katzengold konnten sie ihre Theorie auch gleich bestätigen.

Die Wissenschaft erforscht seit den 1980er Jahren farbig leuchtende Quantenpunkte (engl.: Quantum Dots, QDs), und mittlerweile sind diese Nano-Kristalle auch im Alltag angekommen: Die Elektronikindustrie setzt solche in LCD-Fernsehern ein, um die Farbwiedergabe und damit die Bildqualität stark zu verbessern.


Künstlerische Darstellung der nur wenige Atomschichten dicken Nanoplättchen

Lauren Aleza Kaye / ETH Zürich

Quantenpunkte sind kugelförmige Nanokristalle aus Halbleitermaterial. Werden diese Kristalle mit Licht angeregt, leuchten sie grün oder rot – je nach ihrer Grösse, die zwischen zwei und acht Nanometern liegt. Die kugeligen Formen lassen sich sehr kontrolliert erzeugen.

Rechteckige hauchdünne Kristalle

Vor wenigen Jahren tauchte mehr oder weniger zufällig eine neue Art von Nanokristallen auf dem Radar der Forscher auf: Nano-Plättchen. Diese zweidimensionalen Strukturen sind wie Quantenpunkte nur wenige Nanometer gross, aber von einheitlicher flächiger rechteckiger Form. Sie sind extrem dünn, oft nur wenige Atom-Schichten dick. Diesem Umstand verdanken die Plättchen eine ihrer auffälligsten Eigenschaften: ihr Leuchten ist extrem rein.

Bis jetzt rätselhaft war jedoch, wie die Plättchen entstehen und welche Gesetzmässigkeiten dahinter stehen. ETH-Professor David Norris und sein Team haben das Geheimnis nun gelüftet: «Wir wissen nun, dass es keine magische Formel gibt, um Nanoplättchen zu erzeugen – nur Wissenschaft», betont der Professor für Materialtechnik der ETH Zürich.

In einer soeben in der Fachzeitschrift «Nature Materials» erschienenen Studie zeigen die Forscher anhand von Cadmiumselenid-Nanoplättchen auf, wie diese ihre spezielle flache Form erreichen.

Wachstum ohne Schablone

Bislang ging die Forschung davon aus, dass es für dieses passgenaue Wachstum eine Art Formvorlage brauchte. Wissenschaftler vermuteten eine Art Schablone, die durch Mischung spezieller Ausgangsverbindungen und Lösungsmitteln entsteht, in welchen sie diese flachen Nanokristalle erzeugten.

Norris und Kollegen konnten jedoch in Experimenten keinen Einfluss solcher Formvorlagen nachweisen – im Gegenteil: Die Plättchen können in einfachen Schmelzen der Ausgangsstoffe Cadmium-Carboxylat und Selen gänzlich ohne Lösungsmittel wachsen.
Theoretisches Wachstumsmodell erstellt

Aus dieser Erkenntnis entwickelten die Forscher ein theoretisches Modell, mit dem sie das Wachstum der Plättchen simulierten. Dank dieses Modelles zeigen die Wissenschaftler auf, dass sich zuerst spontan ein Kristallisationskern aus wenigen Cadmium- und Selen-Atomen bildet. Dieser Kristallisationskern kann sich wieder auflösen und anders formieren. Hat er jedoch eine kritische Grösse überstiegen, wächst er schliesslich zum Plättchen aus.

Aus energetischen Gründen wächst der flache Kristall nur an seiner Schmalseite, und zwar um bis zum Tausendfachen schneller als auf seiner Fläche. Auf dieser Seite ist das Wachstum wesentlich langsamer weil dort mehr mangelhaft gebundene Atome an der Oberfläche vorhanden sind. Um diese zu stabilisieren wird Energie benötigt.

Modell experimentell bestätigt

Zu guter Letzt konnten die Forscher ihr Modell auch experimentell bestätigen, indem sie im Labor Nano-Plättchen aus Katzengold (Pyrit, FeS2) herstellten. Diese Plättchen liessen sich exakt anhand der Modellvorhersage mit den Ausgangsstoffen Eisen- und Schwefel-Ionen erzeugen.

«Dass wir solche Kristalle erstmals auch aus Katzengold schaffen konnten, ist sehr interessant», findet Norris. «Das hat uns gezeigt, dass wir unsere Forschung auf weitere Materialien ausdehnen können.» Cadmium-Selenid gilt zwar als das bestbekannte Halbleitermaterial, mit dem solche Nanokristalle bisher erforscht wurden. Allerdings ist es hochgiftig und daher für den Alltagseinsatz nicht brauchbar. Ein Ziel der Forscher ist es deshalb, Nano-Plättchen aus weniger giftigen oder ungiftigen Substanzen zu erzeugen.

Weitere Entwicklung ist offen

Über das Potenzial der Nano-Plättchen kann Norris derzeit nur spekulieren. Sie seien eine interessante Alternative zu Quantenpunkten, da sie gegenüber diesen mehrere Vorteile böten, sagt er. So können sie Farben wie Grün besser und leuchtender erzeugen. Auch übertragen sie effizienter Energie, was sie für den Einsatz in Solarzellen prädestinieren würde. Und auch für Laser wären solche Plättchen geeignet.

Sie haben aber auch Nachteile. Bei Quantenpunkten lässt sich beispielsweise die Farbe stufenlos einstellen, indem Kristalle verschiedener Grösse erzeugt werden. Nicht so bei Plättchen. Deren Farbe ist aufgrund der Schichtung der Atomlagen nur stufenweise verschiebbar.

Diese Einschränkung lässt sich aber mit bestimmten «Tricks» mildern: Die Wellenlänge des von den Plättchen abgegebenen Lichts lässt sich durch Verkapselung in ein anderes Halbleitermaterial feiner einstellen.

«Nur die Zeit wird es zeigen, ob sich das Interesse der Bildschirm-Industrie für unsere Entdeckung wecken lässt», sagt Norris. Einige Firmen setzen zurzeit organische LED (Oled) ein, andere verwenden Quantenpunkte. Wohin die Technologie sich entwickelt, ist unklar. Die vorliegende Studie ist jedoch eine wichtige Basis, um eine breite Palette von Nanoplättchen-Materialien untersuchen zu können. «Dies könnte Halbleiter-Nanokristallen in Zukunft einen wesentlichen Vorteil verschaffen», so der ETH-Professor.

Literaturhinweis

Riedinger A, Ott FD, Mule A, Mazzotti S, Knüsel PN, Kress SJP, Prins F, Erwin SC, Norris DJ. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nature Materials, Published Online 3rd April 2017. DOI 10.1038/nmat4889

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/04/katzengold...

Peter Rüegg | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie