Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perlmutt setzt Maßstäbe

14.12.2009
Ein Sandwichmaterial wird besonders bruchfest, wenn es elastische und harte Nanoschichten im gleichen Verhältnis wie Perlmutt enthält

Wer das richtige Maß sucht, kann sich manchmal an der Natur orientieren - das gilt auch für Materialwissenschaftler: Muscheln etwa schichten im Perlmutt Proteine und Kalziumkarbonat genau im richtigen Schichtdickenverhältnis übereinander, um Perlmutt besonders bruchfest zu machen. Das haben Wissenschaftler des Max-Planck-Instituts für Metallforschung herausgefunden: Nach dem Vorbild von Perlmutt haben sie Titandioxid und ein Polymer zu Verbundmaterialien übereinandergestapelt und dabei die Schichtdicken variiert. Hierbei erwies sich das natürliche Verhältnis der anorganischen und organischen Komponenten als das Stabilste. (Nano Letters, im Druck)


Stabiles Sandwich: Nanoschichten aus Titandioxid und Polymer machen ein Verbundmaterial besonders bruchfest, wenn ihre Dicken im Verhältnis 10:1 zueinander stehen. Bild: MPI für Metallforschung

Auch ein weiches Material kann ein hartes Material stabiler machen - wenn es elastisch und in die harte Substanz in Form nanometerdicker Schichten eingebettet ist. Muscheln ziehen im Perlmutt Proteinschichten zwischen Lagen von Aragonit-Kristallen, ein Mineral aus Kalziumkarbonat. Proteine sind weich aber elastisch wie Gummi. Deswegen ist das Material ihrer Schalen rund 3000 Mal bruchfester als reiner Aragonit. Zuvor gingen Materialwissenschaftler lange davon aus, dass sich ein Material nur mit einem härteren Zusatz festigen lässt.

Die Natur bewies aber nicht nur ein glückliches Händchen bei der Wahl der Stoffe, die Perlmutt stabil machen. In der Evolution, quasi einer natürlichen Versuchsreihe, optimierte sie auch das Verhältnis, in dem die Schichtdicken beider Materialien stehen. Das beläuft sich auf zehn zu eins, denn in Perlmutt schichten sich jeweils 400 Nanometer Aragonit und 40 Nanometer Protein übereinander. Das zumindest legt die Versuchsreihe nahe, die Zaklina Burghard und Joachim Bill gemeinsam mit Vesna Srot und Peter van Aken vom Stuttgarter Zentrum für Elektronenmikroskopie am Max-Planck-Institut für Metallforschung vorgenommen haben.

Die Forscher haben ein Verbundmaterial nach dem Vorbild von Perlmutt hergestellt. Dafür verwendeten sie allerdings nicht Aragonit und eine komplexe Mischung von Proteinen wie Muscheln. Sie setzten vielmehr auf Titandioxid und ein Polymer, da diese Materialien für technische Anwendungen interessanter sind. "Ein Vorteil dieser Ausgangsstoffe liegt auch darin, dass wir sie einfach aus Lösungen abscheiden können", sagt Zaklina Burghard, die an den Arbeiten maßgeblich beteiligt war. So haben die Forscher die beiden Komponenten schichtweise auf einer Siliziumunterlage aufgetragen.

Für das Titandioxid wählten sie dabei eine Dicke von rund 100 Nanometern. Die Stärke der Polymerschicht zwischen zwei Titandioxid-Lagen veränderten die Materialwissenschaftler zwischen 5 und 20 Nanometern. Alle Sandwichstrukturen, die sie so erzeugten, hielten deutlich höheren Belastungen stand als reines Titandioxid vergleichbarer Dicke. Am stabilsten war der Verbundstoff mit Polymerschichten, die wie die Proteinschichten im Perlmutt 10 Nanometer maßen: Es brach erst unter einem vier Mal größeren Druck als reines Titandioxid.

"Um das Material bruchfester zu machen, muss die organische Komponente elastisch sein", sagt Burghard: "Und ihre absolute Schichtdicke ist wichtig." Eine zu dünne Schicht bedeckt die Titandioxidlage nicht vollständig, da deren Oberfläche rau ist. Mehr als 10 Nanometer Polymer machen das Material insgesamt zu weich, wohingegen 10 Nanometer genau das richtige Maß bilden, um das Material zu stabilisieren.

Dann wirkt die Schicht als Bremse für Risse: In einem harten Material wie Titandioxid bilden sich zwar erst unter großem Druck Risse. Da ein hartes Material aber meist auch spröde ist, frisst sich ein Riss direkt ganz durch es hindurch, sobald er entstanden ist - das Material bricht. Eine elastische Polymerschicht wirkt wie gummiartiger Kitt zwischen zwei Mineralschichten und fängt einen Riss ab. Im Verbundwerkstoff reagiert die harte Komponente - egal ob Titandioxid oder Aragonit - daher viel weniger spröde. Und dabei wird es sogar noch härter, wenn es von 10 Nanometer dicken Polymerschichten durchzogen wird.

Trotz der stabilisierenden Polymerschichten reicht das Verbundmaterial der Stuttgarter Forscher noch nicht an Perlmutt heran. Und das, obwohl zumindest kristallines Titandioxid per se härter ist als Aragonit, aber eben nur in der kristallinen, geordneten Form. Die Stuttgarter Forscher bauen ihr Verbundmaterial bislang mit Partikeln aus ungeordnetem, weniger stabilem Titandioxid. Zudem geraten ihre Materialschichten nicht so eben wie im Perlmutt, weil sich die ungeordneten Titandioxidpartikel nicht gleichmäßig anordnen. Daher versuchen die Forscher jetzt, ein Verbundmaterial aus kristallinem Titandioxid herzustellen.

Schon jetzt könnte ihr Verbundmaterial weiße Farbschichten oder schmutzabweisende Beschichtungen kratzfest und elektronische Bauteile bruchsicher machen. Gelingt es ihnen, das Material mit kristallinem Titandioxid zu optimieren, könnte es als Werkstoff auch ganz neue Anwendungen finden, etwa als leichtes und robustes Material für die Beschichtung medizinischer Implantate.

Originalveröffentlichung:

Zaklina Burghard, Lorenzo Zini, Vesna Srot, Paul Bellina, Peter A. van Aken, and Joachim Bill
Toughening through Nature-Adapted Nanoscale Design
Nano Letters, im Druck
Weitere Informationen erhalten Sie von:
Dr. Zaklina Burghard
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: +49 711 689-3226
E-Mail: zburghard@mf.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

23.02.2018 | Biowissenschaften Chemie

Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden

23.02.2018 | Biowissenschaften Chemie

Workshop zu flexiblen Solarzellen und LEDs auf der Energiemesse „New Energy“

23.02.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics