Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Per Mikroschwimmer zur Magenwand

14.12.2015

Ein mit Enzymen beschichteter Mikropropeller verflüssigt lokal die Magenschleimhaut, um sie zu durchdringen

Helicobacter pylori macht es vor. Das im menschlichen Magen häufig vorkommende Bakterium versteht es, sich auch durch die zähe Magenschleimhaut hindurchzubewegen. Zu diesem Zweck scheidet es Substanzen aus, die den pH-Wert ihrer Umgebung verändern und damit den gelartigen Schleim verflüssigen.


Mikropropeller mit Schleimlöser: Ein winziger Schwimmer in Form eines Korkenziehers kann durch die zähe Magenschleimhaut, dargestellt durch die schwarzen Fäden, zur Magenwand (unten) vordringen, weil eine Beschichtung mit dem Enzym Urease die Schleimhaut lokal verflüssigt.

© Alejandro Posada

Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben dieses Prinzip aufgegriffen und nach ihm ein künstliches Mikrovehikel geschaffen, das ebenfalls viskose Schleimhäute durchdringen kann. Die Forscher verbinden damit eine konkrete Hoffnung: Eines Tages könnten solche Schwimmer vielleicht pharmazeutische Wirkstoffe direkt an die Magenwand transportieren – und dort für eine effektive Aufnahme in die Blutbahn sorgen.

Hundert Mal dünner als ein Haar – und damit für das menschliche Auge unsichtbar – ist das Mikrovehikel, das Forscher vom Max-Planck-Institut für Intelligente Systeme in Stuttgart entwickelten. Es besteht aus einem Kopf und einem korkenzieherförmigen, etwa zwei Millionstel Meter langen Anhang. Sein Hauptbestandteil ist Siliziumdioxid, es ist jedoch außerdem mit einer dünnen Nickelschicht versehen.

Diese ermöglicht es später, die Konstruktion mittels eines von außen angelegten Magnetfelds in Rotation zu versetzen. In Flüssigkeiten bewegt sich das Vehikel daher fort, als würde es von einer Schiffschraube angetrieben. Allerdings würde die Antriebskraft des Mikropropellers allein noch nicht ausreichen, ihn auch durch eine zähe Schleimhaut im menschlichen Körper wie diejenige des Magens zu befördern. Diese leistet aufgrund ihres gelartigen Aufbaus schlicht zu viel Widerstand.

An dieser Stelle brachten die Forscher die Chemie ins Spiel, die sie sich bei dem Magenbakterium Helicobacter pylori abgeschaut hatten. Die Mikrobe ist nämlich sehr wohl in der Lage, die Magenschleimhaut zu durchschwimmen – und bis an die Magenwand zu gelangen. Das Bakterium setzt dazu ein Enzym namens Urease frei. Dieses zerlegt den in der Magenflüssigkeit vorhandenen Harnstoff.

Dabei wird unter anderem Ammoniak freigesetzt – eine basische Substanz, die den pH-Wert im ansonsten sauren Milieu des Magens lokal in die Höhe treibt. Weil das gelartige Netzwerk aus einem bestimmten Typ von Mucinen, aus dem die Magenschleimhaut aufgebaut ist, oberhalb eines pH-Wertes von fünf zunehmend zusammenbricht, verflüssigt das Bakterium auf die Art die Schleimhaut in seiner direkten Umgebung und schwimmt durch sie hindurch.

Mit Urease beschichtet schwimmt ein Mikropropeller durch die Magenschleimhaut

Die Forscher in Stuttgart statteten ihren Mikropropeller mit derselben schleimlösenden Fähigkeit aus, indem sie ihn mit Urease beschichteten. Den derart präparierten Schwimmer testeten sie dann in Experimenten an der Magenschleimhaut von Schweinen, bei denen sie von Kollegen der Technischen Universität München unterstützt wurden. In einem harnstoffhaltigen Milieu manövrierten sie das Vehikel dabei mithilfe eines Magnetfeldes durch die Schleimhaut.

Allerdings mussten die Wissenschaftler noch zu einem weiteren Kniff greifen, weil zunächst Schleimhautbestandteile, die auf dem Propeller haften blieben, dessen Rotation behinderten. „Erst ein Zusatz von kleinsten Mengen Gallensäure sorgte für einen reibungslosen Vortrieb“, erklärt Debora Walker, die am Stuttgarter Max-Planck-Institut für Intelligente Systeme in der Gruppe „Mikro-, Nano- und Molekulare Systeme“ forscht. Bei einem Einsatz ihres Mikrovehikels etwa in einem natürlichen menschlichen Magen wäre dies allerdings nicht nötig. „In der Magenflüssigkeit sind solche Salze natürlicher Weise in kleinen Mengen vorhanden“, so Debora Walker.

Wirkstoffe lassen sich gezielt dorthin transportieren, wo sie gebraucht werden

Die Forscher betonen, dass es damit erstmals gelungen sei, einen derartigen Mikroschwimmer auch durch ein zähes biologisches Medium zu manövrieren. Dennoch entsprachen die Modellbedingungen noch nicht exakt den Verhältnissen in einem menschlichen Magen. Beispielsweise sei das Milieu im Versuch weniger sauer gewesen, als dies den Verhältnissen im Magen entsprechen würde. „Die Aktivität unserer Urease sinkt mit abnehmendem pH-Wert deutlich“, so Walker.

Die Folge: Bei einem pH-Wert, wie er im Magen herrscht, hätte die Urease-Beschichtung der Mikroschraube schlicht zu wenig Ammoniak erzeugt, um den pH-Wert ausreichend anzuheben. Die Forscher haben aber schon Ideen, wie sie auch dieses Problem lösen können. Unter anderem denken sie darüber nach, ihr Vehikel mit einer porösen Struktur auszustatten. „Damit würden wir die Oberfläche erhöhen, könnten entsprechend mehr Fläche mit Urease beschichten – und so die Kapazität, Harnstoff in Ammoniak umzuwandeln, erhöhen“, so die Chemikerin weiter.

Sobald das Mikrovehikel einmal vollständig in der Lage sein wird, die menschliche Magenschleimhaut zu durchdringen, empfiehlt es sich auch als Taxi für pharmazeutische Wirkstoffe etwa gegen Magengeschwüre. „Die Wirkstoffe ließen sich dann direkt zu der Stelle in der Magenwand befördern, an der sie gebraucht werden“, erklärt Peer Fischer, in dessen Forschungsgruppe Mikro-, Nano- und Molekulare Systeme am Stuttgarter Max-Planck-Institut für Intelligente Systeme die aktuelle Arbeit vorgenommen wurde.

„Das wäre ein völlig neues Konzept der Medikamentenaufnahme.“ Nach einem ähnlichen Prinzip könnten sich auch gezielt pharmazeutische Substanzen durch die Schleimhaut der Vagina und eventuell sogar des Darms transportieren lassen. Aber bis dahin ist es noch ein weiter Weg. Einstweilen aber freuen sich die Forscher, nach dem Vorbild von H. pylori ein System konstruiert zu haben, das sich seinen Weg durch eine biologische Schleimhaut selbst bahnen kann.


Ansprechpartner

Prof. Peer Fischer, Ph.D.
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3560

E-Mail: OfficeFischer@is.mpg.de


Debora Walker
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3570

E-Mail: schamel@is.mpg.de


Originalpublikation
Debora Walker, Benjamin Käsdorf, Hyeon-Ho Jeong, Oliver Lieleg und Peer Fischer

Enzymatically Active Biomimetic Micropropellers for the Penetration of Mucin Gels

Science Advances, 11. Dezember 2015; doi: 10.1126/sciadv.1500501

Prof. Peer Fischer, Ph.D. | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Weitere Informationen:
https://www.mpg.de/9791491/mikroschwimmer-enzymaktiviert-magenschleimhaut

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie