Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was passiert zwischen Tinte und Papier?

16.12.2010
TU-Forscher untersuchen nanostrukturierte Oberflächen mit Rasterkraftmikroskopen

Um herauszufinden, wie Flüssigkeiten sich im Kontakt mit nanostrukturierten Oberflächen verhalten, haben die Wissenschaftler des Exzellenzclusters „Center of Smart Interfaces“ (CSI) der TU Darmstadt ein Nanoanalytiklabor gegründet.


Polymer-Silica-Teilchen unter einem Rasterelektronenmikroskop: Ihre mikro- und nanometergroßen Strukturen beeinflussen sowohl den Kontaktwinkel ruhender wie das Strömungsverhalten sich ausbreitender Tropfen und ermöglichen damit einen künstlichen Lotus-Effekt.
Foto: Doris Vollmer

Wasser und Schmutz abweisende Fenster oder Autolacke, hocheffiziente Solarzellen und Papier, auf das sich gestochen scharfe Bilder und Texte drucken lassen – eines haben diese auf den ersten Blick sehr unterschiedlichen Entwicklungsziele gemeinsam: Sie funktionieren nur, wenn ihre Oberflächen komplexe Strukturen aufweisen, deren Details nur wenige Nanometer messen, also etwa hunderttausendmal kleiner sind als die Dicke eines menschlichen Haares.

Um herauszufinden, wie Flüssigkeiten sich im Kontakt mit solchen nanostrukturierten Oberflächen verhalten, haben die Wissenschaftler des Exzellenzclusters „Center of Smart Interfaces“ (CSI) der TU Darmstadt ein Nanoanalytiklabor gegründet. Fünf jeweils mehrere hunderttausend Euro teure Rasterkraftmikroskope ermöglichen es, einzelne Moleküle sichtbar zu machen, indem sie die Oberfläche mit einer Nadel abtasten, die an ihrer Spitze nur wenige Nanometer dick ist. Daher können die Forscher bis ins kleinste Detail untersuchen, was zwischen den Oberflächen und den Flüssigkeiten passiert, wenn sie in Kontakt miteinander kommen.

Rasterkraftmikroskope mit unterschiedlichen Aufgaben

Die Forschungsziele sind gleichzeitig anspruchsvoll und für die Anwendung interessant. Zum Beispiel wollen die Forscher herausfinden, was zwischen einem Tintentropfen und einer Papieroberfläche passiert. Relevant ist diese Frage für künftige Tintenstrahldrucker, die besonders kleine Tintentröpfchen auf das Papier bringen sollen, um hochauflösende Drucke zu ermöglichen. Das Problem dabei: auf herkömmlichem Papier zerfließen die Tropfen. Auf stark wasserabweisendem Papier tun sie das zwar nicht; stattdessen perlen sie von dort aber wieder ab. Die Darmstädter CSI-Forscher wollen verstehen, wie dieser Effekt von der Porenstruktur des Papiers abhängt.

Das Nanoanalytiklabor verfügt über fünf unterschiedliche Rasterkraftmikroskope  eine Konzentration an komplementären Geräten, wie sie an kaum einer deutschen Universität vorhanden ist. „Jedes der fünf Mikroskope hat eine besondere Stärke“, sagt Privatdozent Dr. Elmar Bonaccurso, Leiter der Nachwuchsgruppe „Experimental Interface Physics“ am CSI, der im Juli 2010 nach Darmstadt berufen worden ist und zuvor am Max-Planck-Institut für Polymerforschung in Mainz geforscht hat. Eines der Geräte eigne sich, um die Elastizität einer Oberfläche zu messen, indem es seine Spitze in die Oberfläche hineindrückt. Die Stärke eines anderen Mikroskops bestehe darin, die elektrischen Eigenschaften einer Oberfläche, also etwa die elektrische Leitfähigkeit, nanometergenau zu bestimmen. Ein weiteres Gerät sei sehr schnell und könne ein Bild binnen weniger Sekunden aufnehmen, sodass es im Prinzip möglich sei, die Benetzungsphänomene von kleinen Flüssigkeitsmengen auf der Oberfläche zu beobachten.

Forschung kann technische und biologische Fragen beantworten

„Wir wollen ganz allgemein verstehen, wie Oberflächen-Effekte – z.B. der Selbstreinigungseffekt – mit der Nanostruktur der Oberfläche in Beziehung stehen“, beschreibt Bonaccurso ein Ziel seiner Forschung. Ein detailliertes Verständnis fehle bislang bei den meisten Anwendungen. Es sei aber unverzichtbar, um gezielt nanostrukturierte Oberflächen entwerfen zu können, die bestimmte Effekte aufweisen. Bislang sei es in der Industrie üblich, Oberflächeneffekte durch das Ausprobieren verschiedener Strukturen zu erreichen. „In Zukunft soll es möglich sein, neue Oberflächen direkt durch Computersimulation zu entwickeln“, sagt der Wissenschaftler. Perspektivisch könnte z.B. simuliert werden, wie die Papieroberfläche beschaffen sein muss, damit kleine Tintentröpfchen nicht abperlen.

Aber nicht nur technische, sondern auch biologische Systeme wollen die CSI-Forscher in ihrem neuen Nanoanalytiklabor untersuchen. Prof. Dr. Robert Stark, der im April von der Ludwig-Maximilians-Universität München an das CSI in Darmstadt wechselte, untersucht beispielsweise Blutplättchen mit den Rasterkraftmikroskopen. „Dieser intelligente Klebstoff sorgt dafür, dass kleinste Verletzungen der Blutgefäße sofort verheilen“, sagt Stark. Allerdings setzen sich die Plättchen manchmal haufenweise an kleinen entzündlichen Stellen im Blutkreislauf ab und bilden einen so genannten Thrombus. Von diesem lösen sich manchmal ganze Klumpen von Blutplättchen und verstopfen kleine Gefäße des Herzens oder des Gehirns. Die Folgen können Hirnschlag oder Herzinfarkt sein. „Wir möchten herausfinden, wie die Blutplättchen auf biochemische und mechanische Reize im Blutkreislauf reagieren, um zu verstehen, warum sie bei bestimmten Strömungsverhältnissen in der Blutbahn Ablagerungen bilden, die das Gefäß verschließen können“, beschreibt Stark ein Ziel seiner Forschung.

Auch die Halbleiterindustrie interessiere sich für die Möglichkeiten des Darmstädter Nanoanalytiklabors, sagt Stark. Die Halbleiterstrukturen der modernen Elektronik werden immer kleiner, längst haben sie den Nanomaßstab erreicht. Mit den Rasterkraftmikroskopen lässt sich untersuchen, wie leicht diese filigranen Strukturen brechen. Diese Erkenntnisse könne die Industrie nutzen, um die Herstellungs- und Reinigungsprozesse so auszulegen, dass möglichst keine Schäden auftreten, erklärt Stark.

CSI investiert mehr als 1 Million Euro in Nanoanalytiklabor

Momentan befinden sich die Rasterkraftmikroskope noch in zwei getrennten Labors. Ab 2012 werden sie in einem Forschungsgebäude zusammengeführt, das die TU Darmstadt derzeit für das CSI erbaut. Dort werden die Mikroskope durch weitere chemische, physikalische und biochemische Labore sinnvoll ergänzt. Bis 2012 werden mithilfe des Exzellenzclusters, der Professur Starks und Bonaccursos Nachwuchsgruppe mehr als 1 Million Euro in den Aufbau des CSI-Nanoanalytiklabors investiert. „Das Labor soll allen interessierten Mitgliedern der TU Darmstadt zur Verfügung stehen und ein Anziehungspunkt für die Lösung neuer interdisziplinärer Fragestellungen in den Natur- und Ingenieurwissenschaften sein“, sagt Bonaccurso.

Pressekontakt:
Simone Eisenhuth
Center of Smart Interfaces
Telefon: 06151/16-5697
E-Mail: eisenhuth@csi.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.csi.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie