Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was passiert zwischen Tinte und Papier?

16.12.2010
TU-Forscher untersuchen nanostrukturierte Oberflächen mit Rasterkraftmikroskopen

Um herauszufinden, wie Flüssigkeiten sich im Kontakt mit nanostrukturierten Oberflächen verhalten, haben die Wissenschaftler des Exzellenzclusters „Center of Smart Interfaces“ (CSI) der TU Darmstadt ein Nanoanalytiklabor gegründet.


Polymer-Silica-Teilchen unter einem Rasterelektronenmikroskop: Ihre mikro- und nanometergroßen Strukturen beeinflussen sowohl den Kontaktwinkel ruhender wie das Strömungsverhalten sich ausbreitender Tropfen und ermöglichen damit einen künstlichen Lotus-Effekt.
Foto: Doris Vollmer

Wasser und Schmutz abweisende Fenster oder Autolacke, hocheffiziente Solarzellen und Papier, auf das sich gestochen scharfe Bilder und Texte drucken lassen – eines haben diese auf den ersten Blick sehr unterschiedlichen Entwicklungsziele gemeinsam: Sie funktionieren nur, wenn ihre Oberflächen komplexe Strukturen aufweisen, deren Details nur wenige Nanometer messen, also etwa hunderttausendmal kleiner sind als die Dicke eines menschlichen Haares.

Um herauszufinden, wie Flüssigkeiten sich im Kontakt mit solchen nanostrukturierten Oberflächen verhalten, haben die Wissenschaftler des Exzellenzclusters „Center of Smart Interfaces“ (CSI) der TU Darmstadt ein Nanoanalytiklabor gegründet. Fünf jeweils mehrere hunderttausend Euro teure Rasterkraftmikroskope ermöglichen es, einzelne Moleküle sichtbar zu machen, indem sie die Oberfläche mit einer Nadel abtasten, die an ihrer Spitze nur wenige Nanometer dick ist. Daher können die Forscher bis ins kleinste Detail untersuchen, was zwischen den Oberflächen und den Flüssigkeiten passiert, wenn sie in Kontakt miteinander kommen.

Rasterkraftmikroskope mit unterschiedlichen Aufgaben

Die Forschungsziele sind gleichzeitig anspruchsvoll und für die Anwendung interessant. Zum Beispiel wollen die Forscher herausfinden, was zwischen einem Tintentropfen und einer Papieroberfläche passiert. Relevant ist diese Frage für künftige Tintenstrahldrucker, die besonders kleine Tintentröpfchen auf das Papier bringen sollen, um hochauflösende Drucke zu ermöglichen. Das Problem dabei: auf herkömmlichem Papier zerfließen die Tropfen. Auf stark wasserabweisendem Papier tun sie das zwar nicht; stattdessen perlen sie von dort aber wieder ab. Die Darmstädter CSI-Forscher wollen verstehen, wie dieser Effekt von der Porenstruktur des Papiers abhängt.

Das Nanoanalytiklabor verfügt über fünf unterschiedliche Rasterkraftmikroskope  eine Konzentration an komplementären Geräten, wie sie an kaum einer deutschen Universität vorhanden ist. „Jedes der fünf Mikroskope hat eine besondere Stärke“, sagt Privatdozent Dr. Elmar Bonaccurso, Leiter der Nachwuchsgruppe „Experimental Interface Physics“ am CSI, der im Juli 2010 nach Darmstadt berufen worden ist und zuvor am Max-Planck-Institut für Polymerforschung in Mainz geforscht hat. Eines der Geräte eigne sich, um die Elastizität einer Oberfläche zu messen, indem es seine Spitze in die Oberfläche hineindrückt. Die Stärke eines anderen Mikroskops bestehe darin, die elektrischen Eigenschaften einer Oberfläche, also etwa die elektrische Leitfähigkeit, nanometergenau zu bestimmen. Ein weiteres Gerät sei sehr schnell und könne ein Bild binnen weniger Sekunden aufnehmen, sodass es im Prinzip möglich sei, die Benetzungsphänomene von kleinen Flüssigkeitsmengen auf der Oberfläche zu beobachten.

Forschung kann technische und biologische Fragen beantworten

„Wir wollen ganz allgemein verstehen, wie Oberflächen-Effekte – z.B. der Selbstreinigungseffekt – mit der Nanostruktur der Oberfläche in Beziehung stehen“, beschreibt Bonaccurso ein Ziel seiner Forschung. Ein detailliertes Verständnis fehle bislang bei den meisten Anwendungen. Es sei aber unverzichtbar, um gezielt nanostrukturierte Oberflächen entwerfen zu können, die bestimmte Effekte aufweisen. Bislang sei es in der Industrie üblich, Oberflächeneffekte durch das Ausprobieren verschiedener Strukturen zu erreichen. „In Zukunft soll es möglich sein, neue Oberflächen direkt durch Computersimulation zu entwickeln“, sagt der Wissenschaftler. Perspektivisch könnte z.B. simuliert werden, wie die Papieroberfläche beschaffen sein muss, damit kleine Tintentröpfchen nicht abperlen.

Aber nicht nur technische, sondern auch biologische Systeme wollen die CSI-Forscher in ihrem neuen Nanoanalytiklabor untersuchen. Prof. Dr. Robert Stark, der im April von der Ludwig-Maximilians-Universität München an das CSI in Darmstadt wechselte, untersucht beispielsweise Blutplättchen mit den Rasterkraftmikroskopen. „Dieser intelligente Klebstoff sorgt dafür, dass kleinste Verletzungen der Blutgefäße sofort verheilen“, sagt Stark. Allerdings setzen sich die Plättchen manchmal haufenweise an kleinen entzündlichen Stellen im Blutkreislauf ab und bilden einen so genannten Thrombus. Von diesem lösen sich manchmal ganze Klumpen von Blutplättchen und verstopfen kleine Gefäße des Herzens oder des Gehirns. Die Folgen können Hirnschlag oder Herzinfarkt sein. „Wir möchten herausfinden, wie die Blutplättchen auf biochemische und mechanische Reize im Blutkreislauf reagieren, um zu verstehen, warum sie bei bestimmten Strömungsverhältnissen in der Blutbahn Ablagerungen bilden, die das Gefäß verschließen können“, beschreibt Stark ein Ziel seiner Forschung.

Auch die Halbleiterindustrie interessiere sich für die Möglichkeiten des Darmstädter Nanoanalytiklabors, sagt Stark. Die Halbleiterstrukturen der modernen Elektronik werden immer kleiner, längst haben sie den Nanomaßstab erreicht. Mit den Rasterkraftmikroskopen lässt sich untersuchen, wie leicht diese filigranen Strukturen brechen. Diese Erkenntnisse könne die Industrie nutzen, um die Herstellungs- und Reinigungsprozesse so auszulegen, dass möglichst keine Schäden auftreten, erklärt Stark.

CSI investiert mehr als 1 Million Euro in Nanoanalytiklabor

Momentan befinden sich die Rasterkraftmikroskope noch in zwei getrennten Labors. Ab 2012 werden sie in einem Forschungsgebäude zusammengeführt, das die TU Darmstadt derzeit für das CSI erbaut. Dort werden die Mikroskope durch weitere chemische, physikalische und biochemische Labore sinnvoll ergänzt. Bis 2012 werden mithilfe des Exzellenzclusters, der Professur Starks und Bonaccursos Nachwuchsgruppe mehr als 1 Million Euro in den Aufbau des CSI-Nanoanalytiklabors investiert. „Das Labor soll allen interessierten Mitgliedern der TU Darmstadt zur Verfügung stehen und ein Anziehungspunkt für die Lösung neuer interdisziplinärer Fragestellungen in den Natur- und Ingenieurwissenschaften sein“, sagt Bonaccurso.

Pressekontakt:
Simone Eisenhuth
Center of Smart Interfaces
Telefon: 06151/16-5697
E-Mail: eisenhuth@csi.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.csi.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise