Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Elektronik - Solarzellen unter der Lupe

27.06.2013
LMU-Forscher haben eine neue Methode entwickelt, um Materialdefekte von Solarzellen sichtbar zu machen.

LMU-Wissenschaftler um Dr. Bert Nickel haben erstmals das aktive Material von organischen Dünnschicht-Solarzellen unter einer Art Lichtmikroskop mit Hilfe von lokaler Laseranregung untersucht. Darüber berichten sie in der Fachzeitschrift Advanced Materials.

„Wir haben eine Technik entwickelt, bei der wir mit einem fokussierten Laserstrahl, den wir unter anderem mit einer rotierenden Blende modulieren, das Material rastern. So können wir die Defektdichte organischer Dünnfilme direkt abbilden, was bisher nicht möglich war“, erklärt Christian Westermeier, Erstautor der Studie.

Solarzellen verwandeln Sonnenenergie in elektrische Energie. Wie lange die durch Licht induzierte Ladung in Solarzellen verbleibt bevor sie an den Elektroden extrahiert wird, hängt von der Beschaffenheit des Materials ab. Defektstellen in der aktiven Schicht können als Fallen für Ladungsträger wirken: Sie ziehen einen Teil des Stroms ab, weil sie die Ladungsträger temporär festhalten. Mit ihrer Messmethode erfassen die Forscher die Änderungen im Stromfluss, die sich durch lokale Anregung der Defektstellen mit Licht ergeben.
In der Versuchsanordnung wird ein Rückkontakt als dritte Elektrode verwendet. Durch Anlegen einer elektrischen Spannung an dieser Elektrode können die Fallen der Ladungsträger über einen Feldeffekt gezielt gefüllt und entleert werden. Die Frequenzmodulation des Lasers ermöglicht außerdem, die zeitliche Dynamik der Fallenzustände zu erfassen.

Ihre Untersuchung zeigt, dass die Defekte im Material ungleichmäßig verteilt sind, so dass es einige Stellen gibt, an denen sie sich häufen. „Es wäre interessant zu wissen, was an diesen Hot Spots mit der Beschichtung passiert. Die Frage ist, was die Defekte auslöst. Es könnte sich um eine chemische Verunreinigung oder um Störungen in der Anordnung der Moleküle handeln“, sagt Bert Nickel, der auch dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehört.
Für ihre Untersuchung haben Bert Nickel und seine Kollegen das organische Molekül Pentacen ausgewählt, das bestleitende Material, das es zurzeit für die Herstellung von organischen Halbleiterelementen gibt. Sie untersuchten zunächst eine Dünnschicht bestehend aus einem Halbleitermaterial für Elektronenlöcher. In einem weiteren Schritt wollen sie nun die Defekte einer vollständigen Solarzelle abbilden, die aus einer Loch leitenden und einer Elektronen leitenden Schicht besteht.

Publikation:
Mapping of trap densities and hotspots in pentacene thin film transistors by frequency resolved scanning photoresponse microscopy
Christian Westermeier, Matthias Fiebig und Bert Nickel
Advanced Materials
Doi: 10.1002/adma.201300958

Ansprechpartner:
PD Dr. Bert Nickel
Tel.: 089 / 2180 – 1460
E-Mail: nickel@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.softmatter.physik.uni-muenchen.de/?page=CVNickel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kunststoffstrang statt gefräster Facette: neue Methode zur Verbindung von Brillenglas und -fassung
28.04.2017 | Technische Hochschule Köln

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie