Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Elektronik: Wie der Kontakt zwischen Kohlenstoffverbindungen und Metall gelingt

18.02.2013
„Organische Elektronik“ steckt schon heute im Display von Smart-Phones und verspricht auch in Zukunft interessante Produkte, zum Beispiel biegsame Leuchtfolien, die Glühbirnen ersetzen sollen, oder Solarzellen, die Sonnenlicht in Strom umwandeln.

Ein Problem besteht dabei stets darin, die aktive organische Schicht gut mit Metallkontakten zu verbinden. Auch für diese Aufgabe werden oft organische Moleküle eingesetzt. Allerdings war es bisher nicht möglich, genau vorherzusagen, welche Moleküle diese Aufgabe auch erfüllen. Sie mussten daher im Wesentlichen durch Ausprobieren identifiziert werden.


Über ihre „Sauerstoff-Ausleger“ nehmen die untersuchten organischen Verbindungen Kontakt zu den Atomen der Metalloberfläche auf. Dadurch verändern sich ihre elektronischen Eigenschaften.
Bild: Georg Heimel/HU Berlin

Nun hat ein internationales Team von Wissenschaftlern um Dr. Georg Heimel und Prof. Dr. Norbert Koch vom HZB und der Humboldt-Universität zu Berlin herausgefunden, was diese Moleküle miteinander gemeinsam haben. Ihre Ergebnisse könnten es ermöglichen, die Kontaktschichten zwischen Metallelektroden und aktivem Material in organischen Bauelementen gezielter zu verbessern.

„Wir arbeiten seit mehreren Jahren an dieser Fragestellung und konnten nun mit einer Kombination unterschiedlicher Messmethoden und theoretischer Berechnungen ein schlüssiges Bild erhalten“ sagt Georg Heimel. Dabei haben die Forscher systematisch Moleküle untersucht, deren Rückgrat aus einer Reihe von aromatischen Kohlenstoffringen gebildet wird. Die Kandidaten unterschieden sich nur in einem Detail: aus dem Rückgrat ragten unterschiedlich viele Sauerstoffatome. Diese so modifizierten Moleküle brachten sie auf die typischen Kontaktmetalle Gold, Silber und Kupfer auf.

Mit Photoelektronen-Spektroskopie (UPS und XPS) an der Synchrotronstrahlungsquelle BESSY II des HZB konnten sie die chemischen Bindungen zwischen Metalloberfläche und organischen Molekülen ermitteln sowie die Energieniveaus von Leitungselektronen messen. Den exakten Abstand der Moleküle zur Metalloberfläche bestimmten Kollegen von der Universität Tübingen mit Hilfe von X-Ray-Standing-Wave-Messungen, die sie an der Synchrotronstrahlungsquelle ESRF in Grenoble durchführten.

Dabei zeigte sich, dass die untersuchten Moleküle bei nahem Kontakt der „Sauerstoff-Ausleger“ mit einigen der Metalloberflächen ihre innere Struktur so veränderten, dass sie ihre halbleitenden Eigenschaften verloren und die metallischen Eigenschaften der Oberfläche annahmen. Trotz vergleichbarer Voraussetzungen zeigte das „nackte“ Rückgratmolekül diesen Effekt nicht. Aus der Beobachtung welche der untersuchten Moleküle sich auf welchem Metall so drastisch veränderten, konnten die Forscher nun allgemeine Richtlinien ableiten. „Wir haben jetzt eine recht genaue Vorstellung davon, wie Moleküle aussehen sollten und welche Eigenschaften sie mitbringen müssen, damit sie gut zwischen einem aktiven organischen Material und einem Metall vermitteln, also gewissermaßen einen Soft Metallic Contact formen“, meint Heimel.

An der Publikation sind auch Experten weiterer Universitäten in Deutschland sowie aus Forschungseinrichtungen in Suzhou (China), Iwate und Chiba (Japan) sowie der ESRF (Frankreich) maßgeblich beteiligt.

Online-Veröffentlichung am 17. Februar 2013 (19 Uhr MEZ) auf Nature Chemistry – DOI 10.1038/NCHEM.1572.

Weitere Informationen:
Dr. Georg Heimel
Humboldt Universität Berlin
georg.heimel@physik.hu-berlin.de
Prof. Dr. Norbert Koch
Forschungsgruppe - Molekulare Systeme
Fon.: +49 (0)30- 20 93 78 19
norbert.koch@helmholtz-berlin.de
norbert.koch@physik.hu-berlin.de
Pressestelle HZB
Dr. Antonia Rötger
Tel.: +49 (0)30-8062-43733
Fax: +49 (0)30-8062-42998
antonia.roetger@helmholtz-berlin.de

Dr. Ina Helms | Helmholtz Zentrum
Weitere Informationen:
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten