Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ordnung wie von Geisterhand

29.08.2012
Materialwissenschaftler der Universität Jena erzeugen naturnahe Nanostrukturen
Viele Autofahrer träumen davon: Kein Wagenwaschen mehr, weil das Wasser an der Karosserie abperlt und wie von Geisterhand geführt den Schmutz mitnimmt. Dieses Lotuseffekt genannte Phänomen existiert in der Natur bei der Lotuspflanze. Verantwortlich dafür, dass die Schmutzteilchen nicht mehr an der Oberfläche haften, ist ihre komplexe nanostrukturierte Oberfläche.

Doch sind Strukturen im Nanobereich – ein Nanometer entspricht einem millionstel Millimeter, also dem hunderttausendsten Teil eines menschlichen Haares – nur sehr schwer technologisch herzustellen. Mit herkömmlichen fotolithografischen Methoden lassen sich bisher zum Beispiel Nanostrukturen bis in die Größenordnung von 100 nm herstellen, allerdings zu hohen Preisen. Daher ist es sinnvoll, die natürlichen Vorbilder – etwa die molekulare Selbstorganisation – technologisch nachzubilden. Materialwissenschaftlern der Friedrich-Schiller-Universität Jena ist es nun gelungen, solche Nanostrukturen auf der Oberfläche von ultra-dünnen Filmen zu erzeugen und mittels verschiedener Messtechniken nachzuweisen. Ihre Ergebnisse haben die Jenaer Forscher um Prof. Dr. Klaus D. Jandt in der angesehenen amerikanischen Fachzeitschrift „Macromolecules“ veröffentlicht.

Materialien, die der Natur ähnliche molekulare Selbstorganisationseigenschaften aufweisen, sind unter anderem die Block-Copolymere. Block-Copolymere bestehen aus zwei oder mehr unterschiedlichen Polymerketten, die Blöcke genannt werden und miteinander verbunden sind. „Die Kette eines Block-Copolymers kann man sich vereinfacht wie einen Spaghetti vorstellen, der zur Hälfte rot und zur anderen Hälfte blau ist“, erläutert Dipl.-Ing. Robert Schulze von der Friedrich-Schiller-Universität. „Aufgrund ihrer unterschiedlichen chemischen und physikalischen Eigenschaften versuchen die beiden Blöcke, sich gegenseitig so wenig wie möglich zu berühren. Stellt man sich nun einen ganzen Teller dieser rot-blauen Spaghetti vor, so würden sich die roten Hälften nur mit anderen roten Hälften umgeben und die dazugehörigen blauen Hälften nur mit anderen blauen Hälften“, sagt der Doktorand am Lehrstuhl für Materialwissenschaft. Derartige Prozesse werden als Phasenseparation bezeichnet. Da dieser Prozess bei Block-Copolymeren allerdings auf molekularer Ebene stattfindet, wird dies wissenschaftlich als Mikrophasenseparation bezeichnet, bei der im Ergebnis wie von Geisterhand selbstorganisierte Nanostrukturen entstehen. Die vielfältigen Formen und die Größe dieser Nanostrukturen hängen direkt von den Längen der einzelnen Blöcke ab.

Kleine Proben von Copolymer-Dünnschichtfilmen, auf denen Materialwissenschaftler der Uni Jena nanostrukturierte Oberflächen erzeugt haben. Im Hintergrund ist eine mikroskopische Aufnahme der Nanostrukturen zu sehen.

Foto: Jan-Peter Kasper/FSU

Die Materialwissenschaftler der Friedrich-Schiller-Universität Jena nutzen diese Block-Copolymere als Beschichtungen, um selbstorganisierte nanostrukturierte Oberflächen zu erzeugen und zu verstehen. Dabei werden Block-Copolymere mit einer sehr kurzen Kettenlänge verwendet, bei denen beide Blöcke kristallisieren können. „Eine Besonderheit dieser kristallisierbaren Block-Copolymere besteht darin, dass die Kristallisation die Mikrophasenseparation überschreiben kann, wodurch neuartige, bisher unbekannte Nanostrukturen entstehen können“, erläutert Prof. Jandt. Die Größe dieser Nanostrukturen hänge direkt von der ausgestreckten oder ganzzahlig gefalteten Kettenlänge ab. Jandts Team ist es nun gelungen, diese Nanostrukturen auf der Oberfläche von ultra-dünnen Filmen zu erzeugen und mit oberflächensensitiven Messtechniken nachzuweisen.

„Einzigartig an diesen Dünnfilmen ist, dass aufgrund des verwendeten Block-Copolymers asymmetrisch-lamellare Nanostrukturen auf den Dünnfilmoberflächen erzeugt werden konnten, was mit herkömmlichen nicht-kristallisierbaren Block-Copolymeren unmöglich ist“, sagt Jandt. Darüber hinaus habe das untersuchte Block-Copolymer ein bisher unbekanntes Filmbildungsverhalten auf chemisch unterschiedlichen Oberflächen gezeigt, was unter anderem durch die kurze Kettenlänge ausgelöst wird. „In Zukunft soll dies unter anderem als Modellsystem zur Untersuchung der Wechselwirkung zwischen Proteinen und nanostrukturierten Oberflächen genutzt werden“, so Jandt weiter. Ein Ziel ist dabei, die Proteinanlagerung gezielt zu beeinflussen oder gar ganz zu unterbinden. „Derartige Beschichtungen sind insbesondere für medizintechnische Anwendungen oder für Strukturen in Polymer-Solarzellen zur Erzeugung regenerativer Energien von bedeutendem Interesse“, ergänzt der Jenaer Materialwissenschaftler, der zwar auch gerne sein Auto per Lotuseffekt gesäubert sähe, aber v. a. Grenzflächen zwischen Materialien und Lebewesen erforscht.

Original-Publikation:
Robert Schulze et al.: Extended-Chain Induced Bulk Morphologies Occur at Surfaces of Thin Co-Oligomer Films Macromolecules, 2012, 45 (11), pp 4740–4748, DOI: 10.1021/ma300643m

Kontakt:
Prof. Dr. Klaus D. Jandt
Institut für Materialwissenschaft und Werkstofftechnologie der Friedrich-Schiller-Universität Jena
Lehrstuhl für Materialwissenschaft
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730
E-Mail: k.jandt[at]uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue „Arbeitskluft“ für Polizei und Feuerwehr soll Einsätze und Umwelt schützen
23.01.2018 | Deutsche Bundesstiftung Umwelt (DBU)

nachricht Komplexe Parkettmuster, außergewöhnliche Materialien
23.01.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics