Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optimierung künstlicher Gelenke erstmals durch Roboter gestützte Tests und Computersimulation

21.12.2011
Über 400.000 Menschen erhalten in Deutschland jährlich ein neues Hüft- oder Kniegelenk. Doch nach der Operation kommt es in einzelnen Fällen zu Luxationen (Ausrenkungen) oder zu Infektionen der Hüftendoprothese.

Auch mit einem neuen Kniegelenk sind Patienten nicht immer zufrieden, weil sie nach der Operation unklare Schmerzen haben. Prof. Dr. Rainer Bader vom Forschungslabor für Biomechanik und Implantattechnologie der Orthopädischen Klinik und Poliklinik der Universität Rostock und Prof. Dr. Christoph Woernle vom Lehrstuhl für Technische Mechanik und Dynamik der Universität Rostock haben mit ihrem zehnköpfigen Forscherteam einen für Deutschland bislang einmaligen Forschungsansatz entwickelt.

Der Rostocker Forschungsansatz beruht auf einer Kopplung von Roboter gestützten Testverfahren für künstliche Gelenke und Computersimulationen. Mit Hilfe von Robotern können aufwendige Tests an neuen Generationen künstlicher Gelenke durchgeführt werden, um mittelfristig durch optimierte Implantat-Designs mögliche Instabilitäten und Abnutzungsprozesse im künstlichen Gelenk zu verhindern bzw. zu verzögern. Das Verhalten von künstlichen Gelenken (Endoprothesen) und Knochenimplantaten im menschlichen Körper wird vor der klinischen Verwendung im Vorfeld zunehmend virtuell, also an Computermodellen, getestet. Die Kombination aus Roboter gestütztem Testverfahren und Computersimulation für Implantate gibt es bislang nicht. Deshalb stößt diese Forschung auch international auf großes Interesse.

„Die technische Herausforderung besteht darin, eine reale Endoprothese virtuell in die Computersimulation mit kontinuierlicher Datenrückführung einzubinden“, sagt Prof. Bader. Mit der so genannten Hardware-in-the-Loop Simulation können die Forscher sehen, wie sich künstliche Gelenke im Körper unter verschiedenen Belastungen und Randbedingungen mit Berücksichtigung der Muskulatur und des Kapsel-Bandapparates verhalten. Dazu wird die Endoprothese mit einem Roboter nach Vorgaben des Simulationsrechners bewegt und belastet. Der Roboter erfasst die tatsächlich entstehenden Bewegungen und auftretende Kräfte. Weil die Messungen in den virtuellen Menschen zurückgespeist werden, kommt es zu ständigen und gegenseitigen Wechselwirkungen mit der im Roboter befestigten realen Endoprothese und dem virtuellen Patienten.

„Wir nutzen bei unseren Tests mit dem virtuellen Menschen reale Prothesen“, sagt Professor Christoph Woernle. Roboter und Simulationsrechner sind über einen Datenaustausch miteinander verbunden. So lässt sich genau erkennen, wie die Endoprothese sich im menschlichen Körper verhalten würde. Der Computer liefert den Daten zu Bewegungen und Belastungen des Implantats im Körper.

Die Rostocker Forscher haben dazu eine Kooperation mit einem Forschungsinstitut in San Diego (USA) und einem Institut an der Technischen Universität in München aufgebaut. Aus den USA erhalten die Forscher reale Bewegungs- und Belastungsdaten von künstlichen Gelenken, aus München mathematische Beschreibungen über das Verhalten von Muskeln, Sehnen und Bändern beim Patienten. Der virtuelle Patient wird beispielsweise mit konkreten Daten wie Körpergröße und Gewicht bestückt. So lässt sich die ideale und Patienten gerechte Beschaffenheit eines Implantats errechnen.

Für die Rostocker Forscher stehen zwei wesentliche numerische Simulationsverfahren zur Verfügung: die Finite-Elemente-Analyse und die Mehrkörpersimulation. „Deren praktische Anwendung im Klinikalltag steckt allerdings noch in den Kinderschuhen. Das ist ein relativ neues Gebiet, diese Art von Forschung direkt mit der klinischen Anwendung zu verbinden“, erklärt Professor Bader, der selbst Humanmediziner und Diplom-Ingenieur ist. Virtuelle Simulationen werden in der klinischen Praxis bis jetzt vor allem bei der Schadens- und Fehleranalyse eingesetzt. Wenn es etwa bei einem Patienten zu Beschwerden mit der Endoprothese kommt, kann das Problem per Computer zusammen mit den Patientendaten analysiert werden. Für Bader nur der Anfang: Das Rostocker Forscherteam möchte den virtuellen Patienten weiterentwickeln und sich nach Abschluss seiner Forschung zu Hüft- und Knieimplantaten den Problemen an Bandscheibe und Wirbelsäule widmen.

„Das Forschungsvorhaben benötigt einen bestimmten Zeithorizont“, sagt Prof. Bader. Er ist daher froh, dass die bislang im Projekt geschaffenen Testmöglichkeiten der realen Situation des Patienten sehr nahe kommen. „Genauigkeit und Validität sind nun mal oberste Prinzipien für eine fundierte Forschung“. In einem Jahr sollen erste klinisch verwertbare Ergebnisse vorliegen.

Kontakt:
Universität Rostock
Medizinische Fakultät
Orthopädische Klink und Poliklinik
Prof. Dr. Rainer Bader
Fon: +49 (0)381 494 9337
eMail: rainer.bader@med.uni-rostock.de
Fakultät für Maschinenbau und Schiffstechnik
Prof. Dr. Christoph Woernle
Fon: +49 (0)381 498 9360
eMail: christoph.woernle@uni-rostock.de
Presse+Kommunikation
Dr. Ulrich Vetter
Fon: +49 (0)381 498 1013
eMail: ulrich.vetter@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops